logo

指数分布の平均と分散 📂確率分布論

指数分布の平均と分散

公式

Xexp(λ)X \sim \exp ( \lambda)E(X)=1λVar(X)=1λ2 E(X) = {{ 1 } \over { \lambda }} \\ \operatorname{Var} (X) = {{ 1 } \over { \lambda^{2} }}

証明

戦略: 指数分布の定義から直接推論する。

指数分布の定義: λ>0\lambda > 0に対する以下のような確率密度関数を持つ連続確率分布exp(λ)\exp ( \lambda)指数分布という。 f(x)=λeλx,x0 f(x) = \lambda e^{-\lambda x} \qquad , x \ge 0

平均

E(X)=0xλeλxdx E(X)=\int _{ 0 }^{ \infty }{ x\cdot \lambda { e } ^{ -\lambda x } }dx λx=t\lambda x=tと置く場合、λdx=dt\lambda dx=dtとなるので 0tet1λdt=1λet(t+1)0=1λ(0(1))=1λ \begin{align*} \int _{ 0 }^{ \infty }{ t { e }^{ -t } }\frac { 1 }{ \lambda }dt =& \frac { 1 }{ \lambda } { \left\lceil - { e }^{ -t }(t+1) \right\rceil } _{ 0 }^{ \infty } \\ =& \frac { 1 }{ \lambda }(0-(-1)) \\ =& \frac { 1 }{ \lambda } \end{align*}

分散

E(X2)=0x2λeλxdx=1λ20t2etdt=1λ2et(t2+2t+2)0=1λ2(0(2))=2λ2 \begin{align*} E({ X }^{ 2 }) =& \int _{ 0 }^{ \infty }{ { x }^{ 2 } }\lambda { e }^{ -\lambda x }dx \\ =& \frac { 1 }{ { \lambda }^{ 2 } }\int _{ 0 }^{ \infty }{ { t } ^{ 2 } } { e }^{ -t }dt \\ =& \frac { 1 }{ { \lambda }^{ 2 } } { \left\lceil - { e }^{ -t }( { t }^{ 2 }+2t+2) \right\rceil }_{ 0 }^{ \infty } \\ =& \frac { 1 }{ { \lambda }^{ 2 } }(0-(-2)) \\ =& \frac { 2 }{ { \lambda }^{ 2 } } \end{align*} 従って Var(X)=2λ2(1λ)2=1λ2 \operatorname{Var} (X)=\frac { 2 }{ { \lambda }^{ 2 } }- { \left( \frac { 1 }{ \lambda } \right) }^{ 2 }=\frac { 1 }{ { \lambda }^{ 2 } }