指数分布の平均と分散
公式
$X \sim \exp ( \lambda)$ 面 $$ E(X) = {{ 1 } \over { \lambda }} \\ \operatorname{Var} (X) = {{ 1 } \over { \lambda^{2} }} $$
証明
戦略: 指数分布の定義から直接推論する。
指数分布の定義: $\lambda > 0$に対する以下のような確率密度関数を持つ連続確率分布$\exp ( \lambda)$を指数分布という。 $$ f(x) = \lambda e^{-\lambda x} \qquad , x \ge 0 $$
平均
$$ E(X)=\int _{ 0 }^{ \infty }{ x\cdot \lambda { e } ^{ -\lambda x } }dx $$ $\lambda x=t$と置く場合、$\lambda dx=dt$となるので $$ \begin{align*} \int _{ 0 }^{ \infty }{ t { e }^{ -t } }\frac { 1 }{ \lambda }dt =& \frac { 1 }{ \lambda } { \left\lceil - { e }^{ -t }(t+1) \right\rceil } _{ 0 }^{ \infty } \\ =& \frac { 1 }{ \lambda }(0-(-1)) \\ =& \frac { 1 }{ \lambda } \end{align*} $$
■
分散
$$ \begin{align*} E({ X }^{ 2 }) =& \int _{ 0 }^{ \infty }{ { x }^{ 2 } }\lambda { e }^{ -\lambda x }dx \\ =& \frac { 1 }{ { \lambda }^{ 2 } }\int _{ 0 }^{ \infty }{ { t } ^{ 2 } } { e }^{ -t }dt \\ =& \frac { 1 }{ { \lambda }^{ 2 } } { \left\lceil - { e }^{ -t }( { t }^{ 2 }+2t+2) \right\rceil }_{ 0 }^{ \infty } \\ =& \frac { 1 }{ { \lambda }^{ 2 } }(0-(-2)) \\ =& \frac { 2 }{ { \lambda }^{ 2 } } \end{align*} $$ 従って $$ \operatorname{Var} (X)=\frac { 2 }{ { \lambda }^{ 2 } }- { \left( \frac { 1 }{ \lambda } \right) }^{ 2 }=\frac { 1 }{ { \lambda }^{ 2 } } $$
■