logo

三角関数の和差公式と積和公式 📂関数

三角関数の和差公式と積和公式

合成/乗算の公式は頻繁には使われないから、倍角/半角の公式ほど重要ではない。しかし、それで全く必要ないわけではない。導出過程がとても簡単だから、覚えておいて必要な時にすぐ導出して使えるといい。加法定理だけを使って導出する。

加法定理

sin(θ1±θ2)= sinθ1cosθ2±sinθ2cosθ2cos(θ1±θ2)= cosθ1cosθ2sinθ1sinθ2tan(θ1±θ2)= tanθ1±tanθ21tanθ1tanθ2 \begin{align*} \sin ( \theta_{1} \pm \theta_{2}) =&\ \sin \theta_{1} \cos \theta_{2} \pm \sin \theta_{2} \cos \theta_{2} \\ \cos ( \theta_{1} \pm \theta_{2}) =&\ \cos \theta_{1} \cos\theta_{2} \mp \sin\theta_{1} \sin\theta_{2} \\ \tan ( \theta_{1} \pm \theta_{2}) =&\ \dfrac{\tan\theta_{1} \pm \tan\theta_{2}}{1 \mp \tan\theta_{1}\tan\theta_{2}} \end{align*}

合成公式

sinA+sinB= 2sinA+B2cosAB2sinAsinB= 2cosA+B2sinAB2cosA+cosB= 2cosA+B2cosAB2cosAcosB= 2sinA+B2sinAB2 \begin{align*} \sin A + \sin B =&\ 2 \sin \dfrac{A+B}{2} \cos \dfrac{A-B}{2} \\ \sin A - \sin B =&\ 2 \cos \dfrac{A+B}{2} \sin \dfrac{A-B}{2} \\ \cos A + \cos B =&\ 2 \cos \dfrac{A+B}{2} \cos \dfrac{A-B}{2} \\ \cos A - \cos B =&\ -2 \sin \dfrac{A+B}{2} \sin \dfrac{A-B}{2} \end{align*}

導出

長いけど、難しくない。

sin(A+B)= sinAcosB+cosAsinBsin(AB)= sinAcosBcosAsinBcos(A+B)= cosAcosBsinAsinBcos(AB)= cosAcosB+sinAsinB \begin{align} \sin (A+B) =&\ \sin A \cos B + \cos A \sin B \\ \sin (A-B) =&\ \sin A \cos B - \cos A \sin B \\ \cos (A+B) =&\ \cos A \cos B - \sin A \sin B \\ \cos (A-B) =&\ \cos A \cos B + \sin A \sin B \end{align}

Ax+y2A \equiv \dfrac{x+y}{2}Bxy2B \equiv \dfrac{x-y}{2}と置き換えて、(1)(1) ~ (4)(4)に代入すると次のようになる。

sinx= sinx+y2cosxy2+cosx+y2sinxy2siny= sinx+y2cosxy2cosx+y2sinxy2cosx= cosx+y2cosxy2sinx+y2sinxy2cosy= cosx+y2cosxy2+sinx+y2sinxy2 \begin{align} \sin x =&\ \sin \dfrac{x+y}{2} \cos \dfrac{x-y}{2} + \cos \dfrac{x+y}{2} \sin \dfrac{x-y}{2} \\ \sin y =&\ \sin \dfrac{x+y}{2} \cos \dfrac{x-y}{2} - \cos \dfrac{x+y}{2} \sin \dfrac{x-y}{2} \\ \cos x =&\ \cos \dfrac{x+y}{2} \cos \dfrac{x-y}{2} - \sin \dfrac{x+y}{2} \sin \dfrac{x-y}{2} \\ \cos y =&\ \cos \dfrac{x+y}{2} \cos \dfrac{x-y}{2} + \sin \dfrac{x+y}{2} \sin \dfrac{x-y}{2} \end{align}

(5)+(6)(5)+(6)を計算すると下記の式を得る。

sinx+siny=2sinx+y2cosxy2 \sin x + \sin y = 2\sin \dfrac{x+y}{2} \cos \dfrac{x-y}{2}

(5)(6)(5)-(6)を計算すると下記の式を得る。

sinx+siny=2cosx+y2sinxy2 \sin x + \sin y = 2\cos \dfrac{x+y}{2} \sin \dfrac{x-y}{2}

(7)+(8)(7)+(8)を計算すると下記の式を得る。

cosx+cosy=2cosx+y2cosxy2 \cos x + \cos y= 2\cos \dfrac{x+y}{2} \cos \dfrac{x-y}{2}

(7)(8)(7)-(8)を計算すると下記の式を得る。

cosxcosy=2sinx+y2sinxy2 \cos x - \cos y= -2\sin \dfrac{x+y}{2} \sin \dfrac{x-y}{2}

今度はxAx \equiv AyBy \equiv Bに戻して置き換えると次の結果を得る。

sinA+sinB= 2sinA+B2cosAB2sinAsinB= 2cosA+B2sinAB2cosA+cosB= 2cosA+B2cosAB2cosAcosB= 2sinA+B2sinAB2 \begin{align*} \sin A + \sin B =&\ 2 \sin \dfrac{A+B}{2} \cos \dfrac{A-B}{2} \\ \sin A - \sin B =&\ 2 \cos \dfrac{A+B}{2} \sin \dfrac{A-B}{2} \\ \cos A + \cos B =&\ 2 \cos \dfrac{A+B}{2} \cos \dfrac{A-B}{2} \\ \cos A - \cos B =&\ -2 \sin \dfrac{A+B}{2} \sin \dfrac{A-B}{2} \end{align*}

乗算公式

sinAcosB= 12[sin(A+B)+sin(AB)]cosAsinB= 12[sin(A+B)sin(AB)]cosAcosB= 12[cos(A+B)+cos(AB)]sinAsinB= 12[cos(A+B)cos(AB)] \begin{align*} \sin A \cos B =&\ \dfrac{1}{2} \left[ \sin(A+B) + \sin (A-B) \right] \\ \cos A \sin B =&\ \dfrac{1}{2} \left[ \sin(A+B) - \sin (A-B) \right] \\ \cos A \cos B =&\ \dfrac{1}{2} \left[ \cos(A+B) + \cos (A-B) \right] \\ \sin A \sin B =&\ -\dfrac{1}{2} \left[ \cos(A+B) - \cos (A-B) \right] \end{align*}

導出

三角関数の加法定理から簡単に導出できる。 sin(A+B)= sinAcosB+cosAsinBsin(AB)= sinAcosBcosAsinBcos(A+B)= cosAcosBsinAsinBcos(AB)= cosAcosB+sinAsinB \begin{align} \sin (A+B) =&\ \sin A \cos B + \cos A \sin B \\ \sin (A-B) =&\ \sin A \cos B - \cos A \sin B \\ \cos (A+B) =&\ \cos A \cos B - \sin A \sin B \\ \cos (A-B) =&\ \cos A \cos B + \sin A \sin B \end{align}

(9)+(10)(9) + (10)を計算すると次のようになる。

sin(A+B)+sin(AB)=2sinAcosB    sinAcosB=12[sin(A+B)+sin(AB)] \sin (A+B) + \sin(A-B) = 2\sin A \cos B \\ \implies \sin A \cos B = \dfrac{1}{2} \left[ \sin(A+B) + \sin (A-B) \right]

(9)(10)(9) - (10)を計算すると次のようになる。

sin(A+B)sin(AB)=2cosAsinB    cosAsinB=12[sin(A+B)sin(AB)] \sin (A+B) - \sin(A-B) = 2\cos A \sin B \\ \implies \cos A \sin B = \dfrac{1}{2} \left[ \sin(A+B) - \sin (A-B) \right]

(11)+(12)(11) + (12)を計算すると次のようになる。

cos(A+B)+cos(AB)=2cosAcosB    cosAcosB=12[cos(A+B)+cos(AB)] \cos (A+B) + \cos (A-B) = 2 \cos A \cos B \\ \implies \cos A \cos B = \dfrac{1}{2} \left[ \cos(A+B) + \cos (A-B) \right]

(11)(12)(11) - (12)を計算すると次のようになる。

cos(A+B)cos(AB)=2sinAsinB    sinAsinB=12[cos(A+B)cos(AB)] \cos (A+B) - \cos (A-B) =-2 \sin A \sin B \\ \implies \sin A \sin B = -\dfrac{1}{2} \left[ \cos(A+B) - \cos (A-B) \right]