logo

三角関数の微分法 📂関数

三角関数の微分法

公式1

三角関数導関数は次の通り。

ddxsinx=cosxddxcscx=cscxcotxddxcosx=sinxddxsecx=secxtanxddxtanx=sec2xddxcotx=csc2x \begin{align*} \dfrac{d}{dx} \sin x &= \cos x \qquad & \dfrac{d}{dx} \csc x &= -\csc x \cot x \\[1em] \dfrac{d}{dx} \cos x &= - \sin x \qquad & \dfrac{d}{dx} \sec x &= \sec x \tan x \\[1em] \dfrac{d}{dx} \tan x &= \sec^{2} x \qquad & \dfrac{d}{dx} \cot x &= -\csc^{2} x \end{align*}

証明

三角関数の加法公式 sin(α±β)=sinαcosβ±cosαsinβcos(αβ)=cosαcosβ±sinαsinβ \sin\left( \alpha \pm \beta \right) =\sin\alpha \cos\beta \pm\cos\alpha \sin\beta \\ \cos\left( \alpha \mp \beta \right) =\cos\alpha \cos\beta \pm \sin\alpha \sin\beta サイン関数の極限

limx0sinxx=1 \lim \limits_{x \to 0} \dfrac{\sin x}{x} = 1

コサイン関数の極限 limx01cosxx=0 \lim \limits_{x \to 0} \dfrac{1 - \cos x}{x} = 0

(sinx)=cosx(\sin x)^{\prime} = \cos x

導関数の定義により、

limh0sin(x+h)sinxh=limh0sinxcosh+sinhcosxsinxh(삼각함수의 덧셈공식)=sinxlimh0cosh1h+cosxlimh0sinhh=sinx0+cosx1=cosx \begin{align*} & \lim\limits_{h \to 0} \dfrac{\sin (x + h) - \sin x}{h} \\ &= \lim\limits_{h \to 0} \dfrac{\sin x \cos h + \sin h \cos x - \sin x}{h} &\small (\because \text{삼각함수의 덧셈공식}) \\ &= \sin x \lim\limits_{h \to 0} \dfrac{\cos h - 1}{h} + \cos x \lim\limits_{h \to 0} \dfrac{\sin h}{h} \\ &= \sin x \cdot 0 + \cos x \cdot 1 \\ &= \cos x \end{align*}

(cosx)=sinx(\cos x)^{\prime} = -\sin x

定義により、

limh0cos(x+h)cosxh=limh0cosxcoshsinhsinxcosxh(삼각함수의 덧셈공식)=cosxlimh0cosh1hsinxlimh0sinhh=cosx0sinx1=sinx \begin{align*} & \lim\limits_{h \to 0} \dfrac{\cos (x + h) - \cos x}{h} \\ &= \lim\limits_{h \to 0} \dfrac{\cos x \cos h - \sin h \sin x - \cos x}{h} &\small (\because \text{삼각함수의 덧셈공식}) \\ &= \cos x \lim\limits_{h \to 0} \dfrac{\cos h - 1}{h} - \sin x \lim\limits_{h \to 0} \dfrac{\sin h}{h} \\ &= \cos x \cdot 0 - \sin x \cdot 1 \\ &= - \sin x \end{align*}

(tanx)=sec2x(\tan x)^{\prime} = \sec^{2} x

商の微分法

(fg)(x)=f(x)g(x)f(x)g(x)g2(x) \left( \frac{f}{g} \right)^{\prime}(x) = \frac{f^{\prime}(x)g(x)-f(x)g^{\prime}(x)}{g^{2}(x)}

商の微分法により、

tanx=(sinxcosx)=sinxcosxsinxcosxcos2x=cosxcosx+sinxsinxcos2x=1cos2x=(1cosx)2=sec2x \begin{align*} & \tan^{\prime}x \\ &= \left( \dfrac{\sin x}{\cos x} \right)^{\prime} \\ &= \dfrac{\sin^{\prime} x \cos x - \sin x \cos^{\prime} x}{\cos^{2} x} \\ &= \dfrac{\cos x \cos x + \sin x \sin x}{\cos^{2} x} \\ &= \dfrac{1}{\cos^{2} x} \\ &= \left( \dfrac{1}{\cos x} \right)^{2} \\ &= \sec^{2}{x} \end{align*}

(cscx)=cscxcotx(\csc x)^{\prime} = -\csc x \cot x

連鎖律により、

ddxcscx=ddx(1sinx)=dd(sinx)(1sinx)d(sinx)dx=1sin2xcosx=1sinxcosxsinx=cscxcotx \begin{align*} \dfrac{d}{dx} \csc x &= \dfrac{d}{dx} \left( \dfrac{1}{\sin x} \right) \\ &= \dfrac{d}{d(\sin x)} \left( \dfrac{1}{\sin x} \right) \dfrac{d(\sin x)}{dx} \\ &= -\dfrac{1}{\sin^{2} x} \cos x \\ &= -\dfrac{1}{\sin x}\dfrac{\cos x}{\sin x} \\ &= -\csc x \cot x \end{align*}

(secx)=secxtanx(\sec x)^{\prime} = \sec x \tan x

連鎖律により、

ddxsecx=ddx(1cosx)=dd(cosx)(1cosx)d(cosx)dx=1cos2x(sinx)=1cosxsinxcosx=secxtanx \begin{align*} \dfrac{d}{dx} \sec x &= \dfrac{d}{dx} \left( \dfrac{1}{\cos x} \right) \\ &= \dfrac{d}{d(\cos x)} \left( \dfrac{1}{\cos x} \right) \dfrac{d(\cos x)}{dx} \\ &= -\dfrac{1}{\cos^{2} x} (- \sin x) \\ &= \dfrac{1}{\cos x}\dfrac{\sin x}{\cos x} \\ &= \sec x \tan x \end{align*}

(cotx)=csc2x(\cot x)^{\prime} = -\csc^{2} x

(cotx)=(cosxsinx)=(cosx)sinxcosx(sinx)sin2x=sin2xcos2xsin2x=1sin2x=csc2x \begin{align*} (\cot x)^{\prime} &= \left( \dfrac{\cos x}{\sin x} \right)^{\prime} \\ &= \dfrac{(\cos x)^{\prime} \sin x - \cos x (\sin x)^{\prime}}{\sin^{2} x} \\ &= \dfrac{-\sin^{2} x - \cos^{2} x}{\sin^{2} x} \\ &= -\dfrac{1}{\sin^{2} x} \\ &= -\csc^{2} x \end{align*}


  1. James Stewart, Daniel Clegg, and Saleem Watson, Calculus (early transcendentals, 9E), p191-197 ↩︎