logo

データ拡張とは何か? 📂機械学習

データ拡張とは何か?

定義

3522_Joyuries.PNG

データセット X={xRn}X = \left\{ x \in \mathbb{R}^{n} \right\}が与えられたとしよう。適当な変換 fi:RnRnf_{i} : \mathbb{R}^{n} \to \mathbb{R}^{n}を使って XXから XX^{\prime}を得ることをデータオーグメンテーションdata augmentationという。

X=X(i{fi(x):xX}) X^{\prime} = X \cup \left( \bigcup_{i} \left\{ f_{i}(x) : x \in X \right\} \right)

説明

簡単に言うと、例えば画像において、元のデータセットに含まれる画像に左右反転、白黒処理などを適用して得られた新しい画像をデータセットに追加することだ。

データオーグメンテーションが初めて登場した理由は、データ収集の困難さを克服するためだったはずだ。1 100個のデータが必要だが、100個集めるのが難しい、あるいは不可能で、50個のデータしかないとしよう。オーグメンテーションを通じてデータを100個に増やすことで、この問題を解決できる。しかし、最近では単にデータ不足を解決するためだけに使われるのではなく、むしろオーバーフィッティングを防ぐために焦点が合わせられているようだ。2

画像オーグメンテーション

回転、左右反転、拡大、縮小などの単純な変換から、Mixup、CutMix、PuzzleMixなど、複数の画像を組み合わせる技術まで、様々なものが存在する。


  1. 아님 말고 ↩︎

  2. 아님 말고 ↩︎