正方行列のシューア分解
定義
あるユニタリー行列 $Q$ と 上三角行列 $T$ について、$A = Q T Q^{\ast}$ ならば$A$はシュア分解schur Factorizationを持つという。
定理
すべての正方行列 $A \in \mathbb{C}^{ m \times m}$ はシュア分解を持つ。
説明
固有値対角化 の欠点は、$A = S \Lambda S^{-1}$ で分解された場合でもなお$S^{-1}$ を見つける労が必要であることだ。冪乗の計算時間が劇的に減るのは事実だが、行列代数のすべての問題が逆行列を求めることに帰結すると考えれば、冪乗が非常に多く必要な問題以外では、治療よりも害が大きくなる可能性がある。
一方、シュア分解は$T$が上三角行列として与えられるため、冪乗には少し役に立たないかもしれないが、$Q^{\ast}$ を見つけることが非常に簡単であるため、$T$ を適切に扱えば固有値対角化よりもずっと速く問題を解決する可能性がある。上三角行列自体がそんなに扱いづらい行列ではないことを考えると、その汎用性はかなりのものと言えるだろう。そして何よりも、まずシュア分解は正方行列であるだけで十分なほど条件が緩い。
証明
有限次元 $m$ に対して数学的帰納法を使って証明する。$A_{m}$ をある$ m \times m $行列とする。
$m = 1$ ならば$A_{1}$はスカラーであり、自明である。
$m \ge 2$ に対して$A_{m-1}$がシュア分解を持つと仮定する。
$\mathbf{x}$を固有値$\lambda$に対応する単位固有ベクトルとし、$U := \begin{bmatrix} \mathbf{x} & U_{1} \end{bmatrix}$をユニタリー行列と定義すれば$\mathbf{x}^{\ast} A_{m} \mathbf{x} = \lambda$であり、$U_{1}^{\ast} \mathbf{x} = 0$
$$ \begin{align*} U^{\ast} A_{m} U =& \begin{bmatrix} \mathbf{x}^{\ast} \\ U_{1}^{\ast} \end{bmatrix} A_{m} \begin{bmatrix} \mathbf{x} & U_{1} \end{bmatrix} \\ =& \begin{bmatrix} \mathbf{x}^{\ast} A_{m} \mathbf{x} & \mathbf{x}^{\ast} A_{m} U_{1} \\ U_{1}^{\ast} A_{m} \mathbf{x} & U_{1}^{\ast} A_{m} U_{1} \end{bmatrix} \\ =& \begin{bmatrix} \lambda & \mathbf{x}^{\ast} A_{m} U_{1} \\ U_{1}^{\ast} \lambda \mathbf{x} & A_{m-1} \end{bmatrix} \\ =& \begin{bmatrix} \lambda & B \\ \mathbb{0} & A_{m-1} \end{bmatrix} \end{align*} $$
$B \in \mathbb{C}^{m-1}$は任意のベクトルであり、仮定により$A_{m-1}$はシュア分解を持つ。
したがって、$A_{m-1}$はあるユニタリー行列 $V$ と 上三角行列 $T$ に対して$A_{m-1} = V T V^{\ast}$として表される。
それならば、ユニタリー行列 $Q := \begin{bmatrix} 1 & 0 \\ 0 & V \end{bmatrix}$と 上三角行列 $\begin{bmatrix} \lambda & B V \\ 0 & T \end{bmatrix}$に対して
$$ \begin{align*} Q \begin{bmatrix} \lambda & B V \\ 0 & T \end{bmatrix} Q^{\ast} &= \begin{bmatrix} 1 & 0 \\ 0 & V \end{bmatrix} \begin{bmatrix} \lambda & B V \\ 0 & T \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & V^{\ast} \end{bmatrix} \\ =& \begin{bmatrix} 1 & 0 \\ 0 & V \end{bmatrix} \begin{bmatrix} \lambda & B \\ 0 & T V^{\ast} \end{bmatrix} \\ =& \begin{bmatrix} \lambda & B \\ 0 & V T V^{\ast} \end{bmatrix} \\ =& \begin{bmatrix} \lambda & B \\ 0 & A_{m-1} \end{bmatrix} \end{align*} $$
すなわち
$$ \begin{align*} A_{m} =& U Q \begin{bmatrix} \lambda & B V \\ 0 & T \end{bmatrix} Q^{\ast} U^{\ast} \\ =& ( U Q ) \begin{bmatrix} \lambda & B V \\ 0 & T \end{bmatrix} ( U Q )^{\ast} \end{align*} $$
$A_{m-1}$がシュア分解を持てば$A_{m}$もシュア分解を持つので、数学的帰納法により、すべての正方行列はシュア分解を持つ。
■