logo

テンソル積の普遍的性質 📂線形代数

テンソル積の普遍的性質

ビルドアップ1

有限次元ベクトル空間 V1,,VrV_{1}, \dots, V_{r}が与えられたとしよう。ni=dimVin_{i} = \dim V_{i}で、各ベクトル空間の基底を選ぶと、以下のような座標ベクトルへの全単射関数 fif_{i}が得られる。

fi:ViCnivi(ai1,,aini) \begin{align*} f _{i}: & V_{i} \to \mathbb{C}^{n_{i}} \\ & v_{i} \mapsto (a_{i1}, \dots, a_{i n_{i}}) \end{align*}

これにより、以下のような多重線形変換 ffが自然に定義される。

f:V1××VrV1Vr(v1,,vr)v1vr=(j1,,jr)(i=1raiji)ej1ejr \begin{align*} f : V_{1} \times \cdots \times V_{r} &\to V_{1} \otimes \cdots \otimes V_{r} \\ (v_{1}, \dots, v_{r}) &\mapsto v_{1} \otimes \cdots \otimes v_{r} = \sum_{(j_{1}, \dots, j_{r})}\left( \prod_{i=1}^{r} a_{ij_{i}} \right) e_{j_{1}} \otimes \cdots \otimes e_{j_{r}} \end{align*}

ここで、V1V2V_{1} \otimes V_{2}はベクトル空間のテンソル積v1v2v_{1} \otimes v_{2}積ベクトルである。

定理

ベクトル空間 V1,,Vr,WV_{1}, \dots, V_{r}, Wに対して、多重線形変換 ϕ\phiが与えられたとする。

ϕ:V1××VrW \phi : V_{1} \times \cdots \times V_{r} \to W

すると、次を満たす線形変換 ψ:V1VrW\psi : V_{1} \otimes \cdots \otimes V_{r} \to Wが唯一存在する。

ψ(v1vr)=ϕ(v1,,vr),viVi,i \psi (v_{1} \otimes \cdots \otimes v_{r}) = \phi (v_{1}, \dots, v_{r}),\quad \forall v_{i} \in V_{i},\quad \forall i

証明

ViV_{i}の基底を{eji}1jini\left\{ e_{j_{i}} \right\}_{1 \le j_{i} \le n_{i}}としよう。ψ:V1VrW\psi : V_{1} \otimes \cdots \otimes V_{r} \to Wを以下のようなマッピングとして定義する。

ψ(1jiniaj1,,jrej1ejr)=1jiniaj1,,jrϕ(ej1,,ejr) \psi \left( \sum\limits_{1 \le j_{i} \le n_{i}} a_{j_{1},\dots,j_{r}} e_{j_{1}} \otimes \cdots \otimes e_{j_{r}} \right) = \sum\limits_{1 \le j_{i} \le n_{i}} a_{j_{1},\dots,j_{r}} \phi ( e_{j_{1}}, \dots, e_{j_{r}})

すると、ϕ\phiが多重線形であるため、vi=1jinivi(ji)ejiv_{i} = \sum_{1 \le j_{i} \le n_{i}} v_{i}(j_{i})e_{j_{i}}に対して次が成り立つ。

ϕ(v1,,vr)=1jini(i=1rvi(ji))ϕ(ej1,,ejr)=ψ(1jini(i=1rvi(ji))ej1ejr)=ψ((1j1n1v1(j1)ej1)(1jrn1v1(jr)ejr))=ψ(v1vr) \begin{align*} \phi (v_{1}, \dots, v_{r}) &= \sum\limits_{1 \le j_{i} \le n_{i}} \left( \prod_{i=1}^{r} v_{i}(j_{i}) \right) \phi (e_{j_{1}}, \dots, e_{j_{r}}) \\ &= \psi\left( \sum\limits_{1 \le j_{i} \le n_{i}} \left( \prod_{i=1}^{r} v_{i}(j_{i}) \right) e_{j_{1}} \otimes \cdots \otimes e_{j_{r}} \right) \\ &= \psi\left( \left( \sum\limits_{1 \le j_{1} \le n_{1}} v_{1}(j_{1})e_{j_{1}} \right) \otimes \cdots \otimes \left( \sum\limits_{1 \le j_{r} \le n_{1}} v_{1}(j_{r}) e_{j_{r}} \right)\right) \\ &= \psi\left( v_{1} \otimes \cdots \otimes v_{r} \right) \\ \end{align*}

3番目の等式は積ベクトルの定義により成立する。これを満たす別のψ\psi^{\prime}が存在すると仮定しても、ψψ=0\psi - \psi^{\prime} = 0であるために唯一である。

参照


  1. 김영훈·허재성, 양자 정보 이론 (2020), p33-35 ↩︎