logo

ビアンキ恒等式 📂幾何学

ビアンキ恒等式

定理1

RRリーマン曲率としよう。すると、次が成立する。

R(X,Y)Z+R(Y,Z)X+R(Z,X)Y=0 R(X, Y) Z + R(Y, Z) X + R(Z, X) Y = 0

証明

特別な技術なしに、複雑だが難しくない計算で証明される。リーマン曲率の定義により、

R(X,Y)Z+R(Y,Z)X+R(Z,X)Y=YXZXYZ+[X,Y]Z+ZYXYZX+[Y,Z]X+XZYZXY+[Z,X]Y \begin{align*} R(X, Y) Z + R(Y, Z) X + R(Z, X) Y &= \nabla_{Y} \nabla_{X} Z - \nabla_{X} \nabla_{Y} Z + \nabla_{[X,Y]}Z \\ &\quad + \nabla_{Z} \nabla_{Y} X - \nabla_{Y} \nabla_{Z} X + \nabla_{[Y,Z]}X \\ &\quad + \nabla_{X} \nabla_{Z} Y - \nabla_{Z} \nabla_{X} Y + \nabla_{[Z,X]}Y \end{align*}

この時、\nablaリーマン接続によって対称性を持つため、XYYX=[X,Y]\nabla_{X}Y - \nabla_{Y}X = [X, Y]が成立する。したがって、まとめると、

 R(X,Y)Z+R(Y,Z)X+R(Z,X)Y= Y[X,Z]+Z[Y,X]+X[Z,Y]+[X,Y]Z+[Y,Z]X+[Z,X]Y= Y[X,Z]+Z[Y,X]+X[Z,Y][Y,X]Z[Z,Y]X[X,Z]Y= [Y,[X,Z]]+[Z,[Y,X]]+[X,[Z,Y]]= 0 \begin{align*} &\ R(X, Y) Z + R(Y, Z) X + R(Z, X) Y \\ =&\ \nabla_{Y}[X, Z] + \nabla_{Z}[Y, X] + \nabla_{X}[Z, Y] + \nabla_{[X,Y]}Z + \nabla_{[Y,Z]}X + \nabla_{[Z,X]}Y \\ =&\ \nabla_{Y}[X, Z] + \nabla_{Z}[Y, X] + \nabla_{X}[Z, Y] - \nabla_{[Y,X]}Z - \nabla_{[Z,Y]}X - \nabla_{[X,Z]}Y \\ =&\ [Y, [X, Z]] + [Z, [Y, X]] + [X, [Z, Y]] \\ =&\ 0 \end{align*}

最後の等号はヤコビ恒等式によって成立する。


  1. Manfredo P. Do Carmo, Riemannian Geometry (Eng Edition, 1992), p91 ↩︎