logo

ポアソン積分公式の導出 📂複素解析

ポアソン積分公式の導出

公式 1

関数 f:CCf : \mathbb{C} \to \mathbb{C} C:z=r\mathscr{C}: |z| = r を含む 単連結領域において 解析的だとしよう。そうすると、0<ρ<r0 < \rho < r に対して f(ρeiϕ)=12π02πr2ρ2r22rρcos(θϕ)+ρ2f(reiθ)dθ f( \rho e ^{i \phi} ) = {{1} \over { 2 \pi }} \int_{0}^{2 \pi} {{r^2 - \rho^2 } \over {r^2 - 2 r \rho \cos (\theta - \phi) + \rho ^2 }} f(r e^{i \theta}) d \theta

導出

戦略:本質的にはコーシーの積分公式の変形だ。無数の細かい計算を通じて、導出自体は一読する以外に大きな価値はない。


まず、C\mathscr{C} 内部f(α)0f(\alpha) \ne 0 を満たす α\alpha に対して f(α)=12πiC(1zα1zr2/α)f(z)dz\displaystyle f(\alpha) = {{1} \over {2 \pi i }} \int_{\mathscr{C}} \left( {{1} \over { z - \alpha }} - {{1} \over { z - r^2 / \overline{\alpha} }} \right) f(z) dz が成立することを示そう。

α\alphaC\mathscr{C} 内部の点であるため、α<r|\alpha| < r が成り立ち、そして r2α2>1 {{r^2} \over {|\alpha^2|}} > 1 r2α=r2α2α\displaystyle {{r^2} \over {| \overline{ \alpha } |}} = {{ r^2 } \over { |\alpha|^2 }} \left| \alpha \right| だから α<r2α |\alpha| < {{r^2} \over {| \overline{ \alpha } |}} 実数の濃密性により、α|\alpha| より大きく r2α\displaystyle {{r^2} \over {| \overline{ \alpha } |}} より小さい ρ\rho を半径とする C:z=ρ{\mathscr{C}} ': |z| = \rho を考えることができる。定義により、C:z=ρ{\mathscr{C}} ': |z| = \rhoα\alpha を含むが r2α\displaystyle {{r^2} \over { \overline{ \alpha } }} は含まない。収縮補助定理により 12πiC(1zα1zr2/α)f(z)dz=12πiC(1zα1zr2/α)f(z)dz=12πiC1zαf(z)dz12πiC1zr2/αf(z)dz \begin{align*} & {{1} \over {2 \pi i }} \int_{\mathscr{C}} \left( {{1} \over { z - \alpha }} - {{1} \over { z - r^2 / \overline{\alpha} }} \right) f(z) dz \\ =& {{1} \over {2 \pi i }} \int_{\mathscr{C}’} \left( {{1} \over { z - \alpha }} - {{1} \over { z - r^2 / \overline{\alpha} }} \right) f(z) dz \\ =& {{1} \over {2 \pi i }} \int_{\mathscr{C}’} {{1} \over { z - \alpha }} f(z) dz - {{1} \over {2 \pi i }} \int_{\mathscr{C}’} {{1} \over { z - r^2 / \overline{\alpha} }} f(z) dz \end{align*} コーシーの積分公式により 12πiC1zαf(z)dz=f(α) {{1} \over {2 \pi i }} \int_{\mathscr{C}’} {{1} \over { z - \alpha }} f(z) dz = f(\alpha) コーシーの定理により 12πiC1zr2/αf(z)dz=0 {{1} \over {2 \pi i }} \int_{\mathscr{C}’} {{1} \over { z - r^2 / \overline{\alpha} }} f(z) dz = 0 従って次を得る。 f(α)=12πiC(1zα1zr2/α)f(z)dz f(\alpha) = {{1} \over {2 \pi i }} \int_{\mathscr{C}} \left( {{1} \over { z - \alpha }} - {{1} \over { z - r^2 / \overline{\alpha} }} \right) f(z) dz

一方 (1zα1zr2/α)=zr2/αz+α(zα)(zr2/α)=α1r2/α2(zα)(zr2/α) \left( {{1} \over { z - \alpha }} - {{1} \over { z - r^2 / \overline{\alpha} }} \right) = {{z- r^2 / \overline{\alpha} -z +\alpha} \over {(z-\alpha)(z - r^2 / \overline{\alpha} )}} = \alpha {{1 - | r^2 / \alpha^2 | } \over {(z-\alpha)(z - r^2 / \overline{\alpha} )}} したがって、まとめると f(α)=12πiCα1r2/α2(zα)(zr2/α)f(z)dz f(\alpha) = {{1} \over {2 \pi i }} \int_{\mathscr{C}} \alpha {{1 - | r^2 / \alpha^2 | } \over {(z-\alpha)(z - r^2 / \overline{\alpha} )}} f(z) dz z=reiθ,0θ<2πz = r e^{i \theta}, 0 \le \theta < 2 \piα=ρeiϕ,0ϕ<2π\alpha = \rho e^{ i \phi} , 0 \le \phi < 2 \pi に置き換えると f(ρeiϕ)=12πi02πρeiϕ(1r2/ρ2)(reiθρeiϕ)(reiθr2/ρeiϕ)f(reiθ)ireiθdθ=12π02πrρeiϕ(ρ2r2)eiθrρ(reiθρeiϕ)(ρeiθreiϕ)f(reiθ)dθ=12π02π(ρ2r2)ei(θ+ϕ)rρe2iθρ2ei(θ+ϕ)r2ei(θ+ϕ)+rρe2iϕf(reiθ)dθ=12π02πρ2r2rρei(θϕ)ρ2r2+rρei(ϕθ)f(reiθ)dθ=12π02πr2ρ2r22rρcos(θϕ)+ρ2f(reiθ)dθ \begin{align*} f(\rho e^{ i \phi}) =& {{1} \over {2 \pi i }} \int_{0}^{2 \pi} { { \rho e^{ i \phi} ( 1 - | r^2 / \rho^2 | ) } \over {(r e^{i \theta} - \rho e^{ i \phi} )( r e^{i \theta} - r^2 / \rho e^{ -i \phi} )}} f( r e^{i \theta} ) i r e^{i \theta} d \theta \\ =& {{1} \over {2 \pi }} \int_{0}^{2 \pi} { { {{r} \over {\rho}} e^{ i \phi} ( \rho^2 - r^2 ) e^{i \theta} } \over { {{r} \over {\rho}} (r e^{i \theta} - \rho e^{ i \phi} )( \rho e^{i \theta} - r e^{ i \phi} )}} f( r e^{i \theta} ) d \theta \\ =& {{1} \over {2 \pi }} \int_{0}^{2 \pi} { { ( \rho^2 - r^2 ) e^{i (\theta + \phi)} } \over { r \rho e ^{2 i \theta} - \rho^2 e^{i ( \theta + \phi )} - r^2 e^{i (\theta + \phi)} + r \rho e ^{ 2 i \phi} }} f( r e^{i \theta} ) d \theta \\ =& {{1} \over {2 \pi }} \int_{0}^{2 \pi} { { \rho^2 - r^2 } \over { r \rho e ^{ i (\theta - \phi)} - \rho^2 - r^2 + r \rho e ^{ i (\phi - \theta )} }} f( r e^{i \theta} ) d \theta \\ =& {{1} \over {2 \pi }} \int_{0}^{2 \pi} { { r^2 - \rho^2 } \over { r^2 - 2 r \rho \cos (\theta - \phi) + \rho ^2 }} f( r e^{i \theta} ) d \theta \end{align*}


  1. Osborne (1999). Complex variables and their applications: p102. ↩︎