logo

双曲線関数の導関数 📂関数

双曲線関数の導関数

1

双曲線関数導関数は以下の通りです。

$$ \begin{align*} \dfrac{d}{dx} (\sinh x) &= \cosh x \qquad & \dfrac{d}{dx} (\csch x) &= - \csch x \coth x \\ \dfrac{d}{dx} (\cosh x) &= \sinh x \qquad & \dfrac{d}{dx} (\sech x) &= - \sech x \tanh x \\ \dfrac{d}{dx} (\tanh x) &= \sech^{2} x \qquad & \dfrac{d}{dx} (\coth x) &= - \csch^{2} x \end{align*} $$

証明

双曲線関数は指数関数の線形結合であるため、導関数を容易に求めることができます。

$(\sinh x)^{\prime}$, $(\cosh x)^{\prime}$

$$ \begin{align*} \dfrac{d}{dx} \sinh x &= \dfrac{d}{dx} \left( \dfrac{e^{x} - e^{-x}}{2} \right) \\ &= \dfrac{e^{x} + e^{-x}}{2} \\ &= \cosh x \end{align*} $$

$$ \begin{align*} \dfrac{d}{dx} \cosh x &= \dfrac{d}{dx} \left( \dfrac{e^{x} + e^{-x}}{2} \right) \\ &= \dfrac{e^{x} - e^{-x}}{2} \\ &= \sinh x \end{align*} $$

$(\tanh x)^{\prime}$, $(\coth x)^{\prime}$

商の微分法双曲線関数の恒等式 $\cosh^{2} - \sinh^{2} =1$を利用すれば導出できます。

$$ \begin{align*} \dfrac{d}{dx} \tanh x &= \dfrac{d}{dx} \left( \dfrac{\sinh x}{\cosh x} \right) \\[1em] &= \dfrac{(\sinh x)^{\prime} \cosh x - \sinh x (\cosh x)^{\prime}}{\cosh^{2} x} \\[1em] &= \dfrac{\cosh x \cosh x - \sinh x \sinh x}{\cosh^{2} x} \\[1em] &= \dfrac{\cosh^{2} x - \sinh^{2} x}{\cosh^{2} x} \\[1em] &= \dfrac{1}{\cosh^{2} x} \\[1em] &= \sech^{2} x \end{align*} $$

$$ \begin{align*} \dfrac{d}{dx} \coth x &= \dfrac{d}{dx} \left( \dfrac{\cosh x}{\sinh x} \right) \\[1em] &= \dfrac{(\cosh x)^{\prime} \sinh x - \cosh x (\sinh x)^{\prime}}{\sinh^{2} x} \\[1em] &= \dfrac{\sinh x \sinh x - \cosh x \cosh x}{\sinh^{2} x} \\[1em] &= \dfrac{\sinh^{2} x - \cosh^{2} x}{\sinh^{2} x} \\[1em] &= -\dfrac{1}{\sinh^{2} x} \\[1em] &= -\csch^{2} x \end{align*} $$

$(\csch x)^{\prime}$, $(\sech x)^{\prime}$

連鎖律により、

$$ \begin{align*} \dfrac{d}{dx}\csch x &= \dfrac{d}{dx} \left( \dfrac{1}{\sinh x} \right) \\[1em] &= -\dfrac{1}{\sinh^{2} x} (\sinh x)^{\prime} \\[1em] &= -\dfrac{1}{\sinh^{2} x} \cosh x \\[1em] &= -\csch^{2} x \cosh x \\ &= -\csch x \coth x \end{align*} $$

$$ \begin{align*} \dfrac{d}{dx}\sech x &= \dfrac{d}{dx} \left( \dfrac{1}{\cosh x} \right) \\[1em] &= -\dfrac{1}{\cosh^{2} x} (\cosh x)^{\prime} \\[1em] &= -\dfrac{1}{\cosh^{2} x} \sinh x \\[1em] &= -\sech^{2} x \sinh x \\ &= -\sech x \tanh x \end{align*} $$


  1. James Stewart, Daniel Clegg, and Saleem Watson, Calculus (early transcendentals, 9E), p261-266 ↩︎