logo

リーマンゼータ関数のローラン展開の導出 📂関数

リーマンゼータ関数のローラン展開の導出

定理

リーマンのゼータ関数ζ\zetaローラン展開は以下の通りです。

ζ(s)=1s1+n=0γn(1s)nn!,s>1 \zeta (s) = {{ 1 } \over { s-1 }} + \sum_{n=0}^{\infty} \gamma_{n} {{ (1-s)^{n} } \over { n! }} \qquad , s > 1

ここで、γn\gamma_{n}nn番目のスティルチェス定数stieltjes constantsで、以下のように定義されます。

γn:=limmk=1m((logk)nk(logm)nn+1) \gamma_{n} := \lim_{m \to \infty} \sum_{k=1}^{m} \left( {{ \left( \log k \right)^{n} } \over { k }} - {{ \left( \log m \right)^{n} } \over { n+1 }} \right)

説明

特に、スティルチェス定数はn=0n=0の時γ0=γ\gamma_{0} = \gammaで、オイラー・マスケローニ定数です。

この級数展開によれば、ζ(1s)\zeta (1-s)の残差(Residue)は11です。

導出1

ζm(s):=k=1m(ksm1s1s) \zeta_{m} (s) := \sum_{k=1}^{m} \left( k^{-s} - {{ m^{1-s} } \over { 1-s }} \right)

ζm(s)\zeta_{m}(s)を上記のように定義すると、ζ(s)=kNks\displaystyle \zeta (s) = \sum_{k \in \mathbb{N}} k^{-s}なので、s>1s>1の時mm \to \inftyζm(s)ζ(s)\zeta_{m}(s) \to \zeta (s)です。右側の底と指数をひっくり返して指数関数に関するテイラー展開ex=n=0xnn!\displaystyle { { e ^ x } }=\sum _{ n=0 }^{ \infty }{ \frac { { x } ^{ n } }{ n! } }を行うと

ζm(s)+0=k=1m(ksm1s1s)+(11s11s)=1s1+k=1m[ksm1s11s]=1s1+k=1m[1kk1se(1s)logm11s]=1s1+k=1m[1ke(1s)logk1+n=0[(1s)logm]n+111s]=1s1+n=0[k=1m(1k[(1s)logk]nn!11s[(1s)logm]n+1(n+1)!)]=1s1+n=0[k=1m(1k(1s)n[logk]nn!(1s)n[logm]n+1(n+1)!)]=1s1+n=0(1s)nn![k=1m([logk]nk[logm]n+1n+1)] \begin{align*} & \zeta_{m} (s) + 0 \\ =& \sum_{k=1}^{m} \left( k^{-s} - {{ m^{1-s} } \over { 1-s }} \right) + \left( {{ 1 } \over { 1-s }} - {{ 1 } \over { 1-s }} \right) \\ =& {{ 1 } \over { s - 1 }} + \sum_{k=1}^{m} \left[ k^{-s} - {{ m^{1-s} - 1} \over { 1 - s }} \right] \\ =& {{ 1 } \over { s - 1 }} + \sum_{k=1}^{m} \left[ {{ 1 } \over { k }} k^{1-s} - {{ e^{(1-s) \log m} - 1} \over { 1 - s }} \right] \\ =& {{ 1 } \over { s - 1 }} + \sum_{k=1}^{m} \left[ {{ 1 } \over { k }} e^{(1-s) \log k} - {{ 1 + \sum_{n = 0}^{\infty} \left[ (1-s) \log m \right]^{n+1} - 1} \over { 1 - s }} \right] \\ =& {{ 1 } \over { s - 1 }} + \sum_{n = 0}^{\infty} \left[ \sum_{k=1}^{m} \left( {{ 1 } \over { k }} {{ \left[ (1-s) \log k \right]^{n} } \over { n! }} - {{ 1 } \over { 1-s }} {{ \left[ (1-s) \log m \right]^{n+1} } \over { (n+1)! }} \right) \right] \\ =& {{ 1 } \over { s - 1 }} + \sum_{n = 0}^{\infty} \left[ \sum_{k=1}^{m} \left( {{ 1 } \over { k }} {{ (1-s)^{n} \left[ \log k \right]^{n} } \over { n! }} - {{ (1-s)^{n} \left[ \log m \right]^{n+1} } \over { (n+1)! }} \right) \right] \\ =& {{ 1 } \over { s - 1 }} + \sum_{n = 0}^{\infty} {{ (1-s)^{n} } \over { n! }} \left[ \sum_{k=1}^{m} \left( {{ \left[ \log k \right]^{n} } \over { k }} - {{ \left[ \log m \right]^{n+1} } \over { n+1 }} \right) \right] \end{align*}

として、きれいに落ちます。今、s>1s>1の時mm \to \inftyを取った場合、次を得ます。

1s1+n=0γn(1s)nn!=limmζm(s)=ζ(s) {{ 1 } \over { s - 1 }} + \sum_{n = 0}^{\infty} \gamma_{n} {{ (1-s)^{n} } \over { n! }} = \lim_{m \to \infty} \zeta_{m} (s) = \zeta (s)