内積空間で定義された内積に関連したノルムの性質
定理1
内積空間 $\left( X, \langle \cdot,\cdot \rangle \right)$が与えられたとしよう。すると自然に$\left\| \cdot \right\|:=\sqrt{\left\langle \cdot,\cdot \right\rangle }$のようにノルムを定義できて、下の性質が成り立つ。
(a) コーシー-シュワルツ不等式: 任意の$\mathbf{x}, \mathbf{y}\in X$に対して、
$$ \left| \langle \mathbf{x},\mathbf{y} \rangle \right| \le \left\| \mathbf{x} \right\| \left\| \mathbf{y} \right\| $$
(b) 平行四辺形の法則: 任意の$\mathbf{x},\mathbf{y}\in X$に対して、
$$ \left\| \mathbf{x} + \mathbf{y} \right\|^{2} + \left\| \mathbf{x} - \mathbf{y} \right\|^{2} = 2 \left( \left\| \mathbf{x} \right\| ^{2}+ \left\| \mathbf{y} \right\| ^{2} \right) $$
(c) 複素ベクトル空間の偏極恒等式: 複素内積空間$X$と任意の$\mathbf{x},\mathbf{y}\in X$に対して、
$$ \langle \mathbf{x},\mathbf{y} \rangle = \frac{1}{4} \Big( \left\| \mathbf{x} + \mathbf{y} \right\|^{2} - \left\| \mathbf{x} - \mathbf{y} \right\|^{2} + i \left( \left\| \mathbf{x} + i\mathbf{y} \right\|^{2} - \left\| \mathbf{x} - i\mathbf{y} \right\|^{2} \right) \Big) $$
(d) 実ベクトル空間の偏極恒等式: 実内積空間$X$と任意の$\mathbf{x},\mathbf{y}\in X$に対して、
$$ \langle \mathbf{x},\mathbf{y}\rangle = \frac{1}{4} \left( \left\| \mathbf{x}+\mathbf{y} \right\|^{2} - \left\| \mathbf{x}-\mathbf{y} \right\| ^{2} \right) $$
(e) ノルム対内積: 任意の$\mathbf{x} \in X$に対して、
$$ \left\| \mathbf{x} \right\| =\sup \left\{ \left| \langle \mathbf{x},\mathbf{y} \rangle \right| : \mathbf{y}\in X, \left\| \mathbf{y} \right\| =1 \right\} $$
証明
(a)
内積空間で、ノルムの定義によればコーシー-シュワルツ不等式は
$$ \begin{align*} \left| \langle \mathbf{x},\mathbf{y}\rangle \right| & \le \langle \mathbf{x},\mathbf{x} \rangle^{1/2} \langle \mathbf{y},\mathbf{y} \rangle ^{1/2} \\ =&\ \left\| \mathbf{x} \right\| \left\| \mathbf{y} \right\| \end{align*} $$
■
(b)
$$ \begin{align*} \left\| \mathbf{x} + \mathbf{y} \right\|^{2} + \left\| \mathbf{x} - \mathbf{y} \right\|^{2} =&\ \langle \mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y}\rangle + \langle \mathbf{x}-\mathbf{y},\mathbf{x}-\mathbf{y} \rangle \\ =&\ \langle \mathbf{x},\mathbf{x} \rangle + \langle \mathbf{x},\mathbf{y}\rangle + \langle \mathbf{y},\mathbf{x} \rangle + \langle \mathbf{y},\mathbf{y} \rangle \\ & + \langle \mathbf{x},\mathbf{x} \rangle -\langle \mathbf{x},\mathbf{y}\rangle -\langle \mathbf{y},\mathbf{x} \rangle + \langle \mathbf{y},\mathbf{y} \rangle \\ =&\ 2 \langle \mathbf{x},\mathbf{x} \rangle + 2 \langle \mathbf{y},\mathbf{y} \rangle \\ =&\ 2 \left(\langle \mathbf{x},\mathbf{x} \rangle + \langle \mathbf{y},\mathbf{y} \rangle \right) \\ =&\ 2 \left( \left\| \mathbf{x} \right\|^{2} + \left\| \mathbf{y} \right\|^{2} \right) \end{align*} $$
■
(c)
証明 (b) を参照すれば、実数部の計算結果を得られる。
$$ \begin{align*} \left\| \mathbf{x} + \mathbf{y} \right\|^{2} -\left\| \mathbf{x} - \mathbf{y} \right\|^{2} =&\ 2 \langle \mathbf{x},\mathbf{y}\rangle + 2 \langle \mathbf{y},\mathbf{x}\rangle \end{align*} $$
虚数部を計算すると、以下のようになる。
$$ \begin{align*} \left\| \mathbf{x} + i\mathbf{y} \right\|^{2} =&\ \langle \mathbf{x}+i\mathbf{y} , \mathbf{x}+i\mathbf{y} \rangle \\ =&\ \langle \mathbf{x},\mathbf{x}\rangle + \langle \mathbf{x},i\mathbf{y}\rangle + \langle i\mathbf{y},\mathbf{x}\rangle +\langle i\mathbf{y},i\mathbf{y}\rangle \\ =&\ \langle \mathbf{x},\mathbf{x}\rangle -i\langle \mathbf{x},\mathbf{y}\rangle + i\langle \mathbf{y},\mathbf{x}\rangle +\langle \mathbf{y},\mathbf{y} \rangle \end{align*} $$
そして
$$ \begin{align*} \left\| \mathbf{x} - i\mathbf{y} \right\|^{2} =&\ \langle \mathbf{x}-i\mathbf{y} , \mathbf{x}-i\mathbf{y}\rangle \\ =&\ \langle \mathbf{x},\mathbf{x}\rangle - \langle \mathbf{x},i\mathbf{y}\rangle - \langle i\mathbf{y},\mathbf{x}\rangle +\langle i\mathbf{y},i\mathbf{y}\rangle \\ =&\ \langle \mathbf{x},\mathbf{x}\rangle +i\langle \mathbf{x},\mathbf{y}\rangle -i\langle \mathbf{y},\mathbf{x}\rangle +\langle \mathbf{y},\mathbf{y} \rangle \end{align*} $$
従って
$$ \left\| \mathbf{x} + i\mathbf{y} \right\|^{2} - \left\| \mathbf{x} - i\mathbf{y} \right\|^{2} = -2i \langle \mathbf{x},\mathbf{y} \rangle +2i\langle \mathbf{y},\mathbf{x} \rangle $$
だから
$$ \begin{align*} & \left\| \mathbf{x} + \mathbf{y} \right\|^{2} - \left\| \mathbf{x} - \mathbf{y} \right\|^{2} + i \left(\left\| \mathbf{x} + i\mathbf{y} \right\|^{2} - \left\| \mathbf{x} - i\mathbf{y} \right\|^{2} \right) \\ =&\ 2 \langle \mathbf{x},\mathbf{y} \rangle + 2 \langle \mathbf{y},\mathbf{x} \rangle +2\langle \mathbf{x},\mathbf{y} \rangle -2 \langle \mathbf{y},\mathbf{x} \rangle \\ =&\ 4 \langle \mathbf{x},\mathbf{y} \rangle \end{align*} $$
■
(d)
$\langle \mathbf{x},\mathbf{y} \rangle \in \mathbb{R}$ならば $\langle \mathbf{x},\mathbf{y} \rangle=\overline{\langle \mathbf{y},\mathbf{x} \rangle}=\langle \mathbf{y},\mathbf{x} \rangle$であるので、
$$ \begin{align*} \left\| \mathbf{x} + \mathbf{y} \right\| ^{2} -\left\| \mathbf{x} - \mathbf{y} \right\| ^{2} =&\ 2 \langle \mathbf{x},\mathbf{y}\rangle + 2 \langle \mathbf{y},\mathbf{x}\rangle \\ =&\ 4\langle \mathbf{x},\mathbf{y} \rangle \end{align*} $$
■
(e)
コーシー-シュワルツ不等式によれば、
$$ \left| \left\langle \mathbf{x},\mathbf{y} \right\rangle \right| \le \left\| \mathbf{x} \right\| \left\| \mathbf{y} \right\| $$
すると次の式が成立する。
$$ \sup \limits_{\left\| \mathbf{y} \right\|=1 } \left| \left\langle \mathbf{x},\mathbf{y} \right\rangle \right| \le \left\| \mathbf{x} \right\| $$
この時 $\mathbf{y}=\dfrac{\mathbf{x}}{\left\| \mathbf{x} \right\| }$を$\left\| \mathbf{y} \right\| = 1$として、
$$ \begin{align*} \left| \left\langle \mathbf{x},\mathbf{y} \right\rangle \right| =&\ \left| \left\langle \mathbf{x}, \frac{\mathbf{x}}{\left\| \mathbf{x} \right\| } \right\rangle \right| \\ =&\ \frac{1}{\left\| \mathbf{x} \right\| } \left\langle \mathbf{x},\mathbf{x} \right\rangle \\ =&\ \frac{1}{\left\| \mathbf{x} \right\| }\left\| \mathbf{x} \right\|^{2} \\ =&\ \left\| \mathbf{x} \right\| \end{align*} $$
が成立する。従って、
$$ \sup \limits_{\left\| \mathbf{y} \right\|=1 } \left| \left\langle \mathbf{x},\mathbf{y} \right\rangle \right| = \left\| \mathbf{x} \right\| $$
■
Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p64-65 ↩︎