logo

メリン変換の畳み込み 📂フーリエ解析

メリン変換の畳み込み

定義

メリン変換畳み込みは次の通りだ。

$$ (f \times g) (y) = \int _{0}^{\infty} f(x)g \left(\frac{y}{x} \right)\frac{dx}{x} $$

説明

乗法的畳み込みmultiplicative convolution1とも呼ぶ。

証明

$$ \mathcal{M}(f \times g)=(\mathcal{M}f)(\mathcal{M}g) $$

上の式が成り立つことを示せばいい。

$$ \begin{align*} \mathcal{M}(f\times g)(s) &= \int _{0} ^{\infty} x^{s-1} (f\times g)(x)dx \\ &= \int _{0} ^{\infty} x^{s-1} (f\times g)(x)dx \\ &= \int _{0} ^{\infty} x^{s-1} \left( \int _{0}^{\infty}f(y)g \left( \frac{x}{y} \right)\frac{dy}{y} \right)dx \\ &= \int _{0} ^{\infty} \int _{0}^{\infty}x^{s-1}f(y)g \left( \frac{x}{y} \right)\frac{dy}{y} dx \\ &= \int _{0} ^{\infty} \int _{0}^{\infty}y^{s-1}z^{s-1}f(y)g (z)dydz \\ &= \int _{0} ^{\infty} y^{s-1}f(y)dy \int_{0}^{\infty} z^{s-1}g (z)dz \\ &= \mathcal{M}f(s) \mathcal{M}g(s) \end{align*} $$


  1. Gerald B. Folland, Fourier Analysis and Its Applications (1992), p254 ↩︎