logo

微分可能な関数の性質 📂解析学

微分可能な関数の性質

定理1

f,g:[a,b]Rf, g : [a,b] \to \mathbb{R}としよう。もしf,gf,gx[a,b]x\in [a,b]微分可能であれば、f+gf+gfgfgf/gf/gxxで微分可能であり、以下の式が成立する。

(f+g)(x)=f(x)+g(x)(fg)(x)=f(x)g(x)+f(x)g(x)(fg)(x)=f(x)g(x)f(x)g(x)g2(x) \begin{align} (f+g)^{\prime}(x) &=f^{\prime}(x)+g^{\prime}(x) \\ (fg)^{\prime}(x) &= f^{\prime}(x)g(x)+f(x)g^{\prime}(x) \\ \left( \frac{f}{g} \right)^{\prime}(x) &= \frac{f^{\prime}(x)g(x)-f(x)g^{\prime}(x)}{g^{2}(x)} \end{align}

ただし、(3)(3)g(x)0g(x)\ne 0のときに成立する。

説明

(2)(2)は一般に乗法の微分法則と呼ばれる。

証明

(1)(1)

微分の定義関数の極限の性質により、以下が成立する。

(f+g)(x)=limtx(f+g)(x)(f+g)(t)xt=limtx(f(x)+g(x))(f(t)+g(t))xt=limtx(f(x)f(t))+(g(x)+g(t))xt=limtx[f(x)f(t)xt+g(x)+g(t)xt]=limtxf(x)f(t)xt+limtxg(x)+g(t)xt=f(x)+g(x) \begin{align*} (f+g)^{\prime}(x) &=\lim \limits_{t \to x} \frac{(f+g)(x)-(f+g)(t)}{x-t} \\ &= \lim \limits_{t \to x} \frac{(f(x)+g(x))-(f(t)+g(t))}{x-t} \\ &= \lim \limits_{t \to x} \frac{(f(x)-f(t))+(g(x)+g(t))}{x-t} \\ &= \lim \limits_{t \to x} \left[ \frac{f(x)-f(t)}{x-t}+\frac{g(x)+g(t)}{x-t} \right] \\ &= \lim \limits_{t \to x} \frac{f(x)-f(t)}{x-t}+ \lim \limits_{t \to x}\frac{g(x)+g(t)}{x-t} \\ &= f^{\prime}(x)+g^{\prime}(x) \end{align*}

(2)(2)

微分の定義と関数の極限の性質により、以下が成立する。

(fg)(x)=limtx(fg)(x)(fg)(t)xt=limtxf(x)g(x)f(t)g(t)xt=limtxf(x)g(x)f(t)g(x)+f(t)g(x)f(t)g(t)xt=limtx[f(x)g(x)f(t)g(x)xt+f(t)g(x)f(t)g(t)xt]=limtx[f(x)f(t)xtg(x)+f(t)g(x)g(t)xt]=limtx[f(x)f(t)xtg(x)]+limtx[f(t)g(x)g(t)xt]=limtxf(x)f(t)xtlimtxg(x)+limtxf(t)limtxg(x)g(t)xt=f(x)g(x)+f(x)g(x) \begin{align*} (fg)^{\prime}(x) &= \lim \limits_{t \to x} \frac{(fg)(x)-(fg)(t)}{x-t} \\ &= \lim \limits_{t \to x}\frac{f(x)g(x)-f(t)g(t)}{x-t} \\ &= \lim \limits_{t \to x}\frac{f(x)g(x) {\color{blue}-f(t)g(x)+f(t)g(x)}-f(t)g(t)}{x-t} \\ &= \lim \limits_{t \to x}\left[ \frac{f(x)g(x) -f(t)g(x)}{x-t} + \frac{f(t)g(x)-f(t)g(t)}{x-t} \right] \\ &= \lim \limits_{t \to x}\left[ \frac{f(x) -f(t)}{x-t}g(x) + f(t)\frac{g(x)-g(t)}{x-t} \right] \\ &= \lim \limits_{t \to x} \left[\frac{f(x) -f(t)}{x-t}g(x)\right] + \lim \limits_{t \to x} \left[ f(t)\frac{g(x)-g(t)}{x-t} \right] \\ &= \lim \limits_{t \to x}\frac{f(x) -f(t)}{x-t}\lim \limits_{t \to x}g(x) + \lim \limits_{t \to x} f(t)\lim \limits_{t \to x}\frac{g(x)-g(t)}{x-t} \\ &= f^{\prime}(x)g(x)+f(x)g^{\prime}(x) \end{align*}

(3)(3)

(2)(2)と同様の方法で証明される。

(fg)(x)=limtx(f/g)(x)(f/g)(t)xt=limtxf(x)/g(x)f(t)/g(t)xt=limtxf(x)/g(x)f(x)/g(t)+f(x)/g(t)f(t)/g(t)xt=limtx[f(x)/g(x)f(x)/g(t)xt+f(x)/g(t)f(t)/g(t)xt]=limtx[f(x)g(t)g(x)g(t)f(x)g(x)g(t)g(x)xt+f(x)g(x)g(t)g(x)f(t)g(x)g(t)g(x)xt]=limtx1g(x)g(t)[f(x)g(t)f(x)g(x)xt+f(x)g(x)f(t)g(x)xt]=limtx1g(x)g(t)[f(x)g(x)f(t)g(x)xtf(x)g(x)f(x)g(t)xt]=limtx1g(x)g(t)[f(x)f(t)xtg(x)f(x)g(x)g(t)xt]=limtx1g(x)g(t)limtx[f(x)f(t)xtg(x)f(x)g(x)g(t)xt]=1g2(x)[f(x)g(x)f(x)g(x)]=f(x)g(x)f(x)g(x)g2(x) \begin{align*} \left( \frac{f}{g} \right)^{\prime}(x) &= \lim \limits_{ t \to x } \frac{(f/g)(x) -(f/g)(t)}{x-t} \\ &= \lim \limits_{ t \to x } \frac{f(x)/g(x) -f(t)/g(t)}{x-t} \\ &= \lim \limits_{ t \to x } \frac{f(x)/g(x) {\color{blue}-f(x)/g(t)+f(x)/g(t)}- f(t)/g(t)}{x-t} \\ &= \lim \limits_{ t \to x } \left[ \frac{f(x)/g(x) - f(x)/g(t) }{x-t}+\frac{f(x)/g(t)-f(t)/g(t)}{x-t} \right] \\ &= \lim \limits_{ t \to x } \left[ \frac{\frac{f(x){\color{blue}g(t)}}{g(x){\color{blue}g(t)}} -\frac{f(x){\color{blue}g(x)}}{g(t){\color{blue}g(x)}} }{x-t}+\frac{\frac{f(x){\color{blue}g(x)}}{g(t){\color{blue}g(x)}}-\frac{f(t){\color{blue}g(x)}}{g(t){\color{blue}g(x)}}}{x-t} \right] \\ &= \lim \limits_{ t \to x } \frac{1}{g(x)g(t)} \left[ {\color{red}\frac{f(x)g(t)-f(x)g(x) }{x-t}}+\frac{f(x)g(x)-f(t)g(x)}{x-t} \right] \\ &= \lim \limits_{ t \to x }\frac{1}{g(x)g(t)} \left[\frac{f(x)g(x)-f(t)g(x)}{x-t}{\color{red}-\frac{f(x)g(x)-f(x)g(t) }{x-t}} \right] \\ &= \lim \limits_{ t \to x }\frac{1}{g(x)g(t)} \left[\frac{f(x)-f(t)}{x-t}g(x)-f(x)\frac{g(x)-g(t) }{x-t} \right] \\ &= \lim \limits_{ t \to x }\frac{1}{g(x)g(t)} \lim \limits_{ t \to x } \left[\frac{f(x)-f(t)}{x-t}g(x)-f(x)\frac{g(x)-g(t) }{x-t} \right] \\ &= \frac{1}{g^{2}(x)}\left[ f^{\prime}(x)g(x)-f(x)g^{\prime}(x) \right] \\ &= \frac{f^{\prime}(x)g(x)-f(x)g^{\prime}(x)}{g^{2}(x)} \end{align*}


  1. Walter Rudin, Principles of Mathmatical Analysis (3rd Edition, 1976), p104-105 ↩︎