logo

双曲線関数の加法定理の証明 📂関数

双曲線関数の加法定理の証明

公式

sinh(x±y)= sinhxcoshy±sinhycoshxcosh(x±y)= coshxcoshy±sinhxsinhytanhx±y=tanhx±tanhy1±tanhxtanhy \begin{align} \sinh (x\pm y) =&\ \sinh x \cosh y \pm \sinh y \cosh x \\ \cosh (x \pm y) =&\ \cosh x \cosh y \pm \sinh x \sinh y \\ \tanh{x \pm y}&=\frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y} \end{align}

説明

双曲関数と三角関数の関係を考えてみれば、三角関数の加法定理と似ているのは当然だ。

証明

(1)(1) の証明

sinh(x+y)= ex+yexy2= 2ex+y2exy4= ex+yex+y+exyexy4+ex+y+ex+yexyexy4= (exex)ey+(exex)ey4+ey(ex+ex)ey(ex+ex)4= (exex)(ey+ey)4+(eyey)(ex+ex)4= (exex2)(ey+ey2)+(eyey2)(ex+ex2)= sinhxcoshy+sinhycoshx \begin{align*} \sinh (x+y) =&\ \frac{e^{x+y}-e^{-x-y}}{2} \\ =&\ \frac{2e^{x+y}-2e^{-x-y}}{4} \\ =&\ \frac{e^{x+y} \color{red}{-e^{-x+y}} \color{blue}{+e^{x-y}}-e^{-x-y}}{4} +\frac{e^{x+y} \color{red}{+e^{-x+y}} \color{blue}{-e^{x-y}}-e^{-x-y}}{4} \\ =&\ \frac{(e^{x} -e^{-x})e^{y}+(e^{x}-e^{-x})e^{-y}}{4} +\frac{e^{y}(e^{x}+e^{-x})-e^{-y}(e^{x}+e^{-x})}{4} \\ =&\ \frac{(e^{x} -e^{-x})(e^{y}+e^{-y})}{4} +\frac{(e^{y}-e^{-y})(e^{x}+e^{-x})}{4} \\ =&\ \left( \frac{e^{x} -e^{-x}}{2} \right)\left( \frac{e^{y} +e^{-y}}{2} \right) + \left( \frac{e^{y} -e^{-y}}{2} \right)\left( \frac{e^{x} +e^{-x}}{2} \right) \\[1em] =&\ \sinh x \cosh y +\sinh y \cosh x \end{align*}

sinh(x)=sinhx\sinh (-x)=-\sinh xであり、cosh(y)=coshy\cosh (-y)=\cosh yなので、

sinh(xy)= sinhxcosh(y)+sinh(y)coshx= sinhxcoshysinhycoshx \begin{align*} \sinh (x-y) =&\ \sinh x \cosh (-y)+\sinh (-y) \cosh x \\ =&\ \sinh{x} \cosh y -\sinh y \cosh x \end{align*}

(2)(2) の証明

cosh(x+y)= ex+y+exy2= 2ex+y+2exy4= ex+y+ex+y+exy+exy4+ex+yex+yexy+exy4= (ex+ex)ey+(ex+ex)ey4+(exex)ey(exex)ey4= (ex+ex)(ey+ey)4+(exex)(eyey)4= (ex+ex2)(ey+ey2)+(exex2)(eyey2)= coshxcoshy+sinhxsinhy \begin{align*} \cosh (x+y) =&\ \frac{e^{x+y}+e^{-x-y}}{2} \\ =&\ \frac{2e^{x+y}+2e^{-x-y}}{4} \\ =&\ \frac{e^{x+y} \color{red}{+e^{-x+y}} \color{blue}{+e^{x-y}}+e^{-x-y}}{4} +\frac{e^{x+y} \color{red}{-e^{-x+y}} \color{blue}{-e^{x-y}}+e^{-x-y}}{4} \\ =&\ \frac{(e^{x} +e^{-x})e^{y}+(e^{x}+e^{-x})e^{-y}}{4} +\frac{(e^{x}-e^{-x})e^{y}-(e^{x}-e^{-x})e^{-y}}{4} \\ =&\ \frac{(e^{x} +e^{-x})(e^{y}+e^{-y})}{4} +\frac{(e^{x}-e^{-x})(e^{y}-e^{-y})}{4} \\ =&\ \left( \frac{e^{x} +e^{-x}}{2} \right)\left( \frac{e^{y} +e^{-y}}{2} \right) +\left( \frac{e^{x} -e^{-x}}{2} \right) \left( \frac{e^{y} -e^{-y}}{2} \right) \\[1em] =&\ \cosh x \cosh y +\sinh x \sinh y \end{align*}

また、

cosh(xy)= coshxcosh(y)+sinhxsinh(y)= coshxcoshysinhxsinhy \begin{align*} \cosh (x-y) =&\ \cosh x \cosh (-y) + \sinh x \sinh (-y) \\ =&\ \cosh x \cosh y -\sinh x \sinh y \end{align*}

(3)(3) の証明

tanh(x+y)= sinh(x+y)cosh(x+y)= sinhxcoshy+sinhycoshxcoshxcoshy+sinhxsinhy= sinhxcoshycoshxcoshy+sinhycoshxcoshxcoshy1+sinhxsinhycoshxcoshy= tanhx+tanhy1+tanhxtanhy \begin{align*} \tanh (x+y) =&\ \frac{\sinh (x+y)}{\cosh (x+y)} \\[1em] =&\ \frac{\sinh x \cosh y + \sinh y \cosh x}{\cosh x \cosh y +\sinh x \sinh y} \\[1em] =&\ \frac{\frac{\sinh x \cosh y }{\cosh x \cosh y}+ \frac{\sinh y \cosh x}{\cosh x \cosh y}}{1 +\frac{\sinh x \sinh y}{\cosh x \cosh y}} \\[1em] =&\ \frac{\tanh x +\tanh y}{1+\tanh x \tanh y} \end{align*}

また、tanh(x)=tanhx\tanh (-x)=-\tanh x なので、

tanh(xy)= tanhx+tanh(y)1+tanhxtanh(y)= tanhxtanhy1tanhxtanhy \begin{align*} \tanh (x-y) =&\ \frac{\tanh x +\tanh (-y)}{1+\tanh x \tanh (-y)} \\[1em] =&\ \frac{\tanh x -\tanh y}{1-\tanh x \tanh y} \end{align*}