logo

L2空間における変換、変調、および拡大の交換関係 📂ルベーグ空間

L2空間における変換、変調、および拡大の交換関係

定理1

全ての a,bRa, b \in \mathbb{R}c>0c > 0 に対して、Ta,Eb,DcT_{a}, E_{b}, D_{c} は以下の関係を持つ。

(TaEbf)(x)=e2πiba(EbTaf)(x) \begin{equation} (T_{a} E_{b} f ) (x) = e^{- 2 \pi i b a} (E_{b} T_{a} f ) (x) \end{equation}

(TaDcf)(x)=(DcTa/cf)(x) \begin{equation} (T_{a} D_{c} f ) (x) = (D_{c} T_{a/c} f ) (x) \end{equation}

(DcEbf)(x)=(Eb/cDcf)(x) \begin{equation} (D_{c} E_{b} f ) (x) = (E_{b/c} D_{c} f ) (x) \end{equation}

この時、Ta,Eb,DcT_{a}, E_{b}, D_{c} はそれぞれ L2L^{2} で定義されたトランスレーション、モジュレーション、ダイレーションである。

証明

(1)

(TaEbf)(x)=Ta(e2πibxf(x))=e2πib(xa)f(xa)=e2πib(a)e2πibxf(xa)=e2πiba(EbTaf)(x) \begin{align*} (T_{a} E_{b} f ) (x) =& T_{a} \left( e^{2 \pi i b x} f(x) \right) \\ =& e^{2 \pi i b (x-a)} f(x-a) \\ =& e^{2 \pi i b (-a)} e^{2 \pi i b x} f(x-a) \\ =& e^{- 2 \pi i b a} (E_{b} T_{a} f ) (x) \end{align*}

(2)

(TaDcf)(x)=Ta(1cf(xc))=1cf(xac)=1c(Ta/cf)(xc)=(DcTa/cf)(x) \begin{align*} (T_{a} D_{c} f ) (x) =& T_{a} \left( {{ 1 } \over { \sqrt{c} }} f \left( {{ x } \over { c }} \right) \right) \\ =& {{ 1 } \over { \sqrt{c} }} f \left( {{ x-a } \over { c }} \right) \\ =& {{ 1 } \over { \sqrt{c} }} (T_{a/c} f) \left( {{ x } \over { c }} \right) \\ =& (D_{c} T_{a/c} f ) (x) \end{align*}

(3)

(DcEbf)(x)=Dc(e2πibxf(x))=1ce2πibx/cf(xc)=e2πi(b/c)x1cf(xc)=e2πi(b/c)x(Dcf)(x)=(Eb/cDcf)(x) \begin{align*} (D_{c} E_{b} f ) (x) =& D_{c} \left( e^{2 \pi i b x } f (x) \right) \\ =& {{ 1 } \over { \sqrt{c} }} e^{ 2 \pi i b x/c } f \left( {{ x } \over { c }} \right) \\ =& e^{ 2 \pi i (b/c) x } {{ 1 } \over { \sqrt{c} }} f \left( {{ x } \over { c }} \right) \\ =& e^{ 2 \pi i (b/c) x } (D_{c} f)(x) \\ =& (E_{b/c} D_{c} f)(x) \end{align*}


  1. Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p123 ↩︎