logo

ルジャンドル微分方程式の三角関数形 📂微分方程式

ルジャンドル微分方程式の三角関数形

定義

三角関数の形の関連するルジャンドルの微分方程式は以下の通りです。

$$ \begin{align} \frac{ d^{2} y}{ d \theta^{2} }+\cot \theta \frac{ d y}{ d \theta}+ \left( l(l+1) -\frac{m^{2}}{\sin ^{2 }\theta} \right)y=0 \\ \mathrm{or} \quad\frac{1}{\sin \theta}\left(\sin \theta \frac{dy}{d\theta} \right)+ \left(l(l+1) -\frac{ m^{2}}{\sin ^{2} \theta} \right)y=0 \end{align} $$

説明

電磁気学、量子力学などで球面座標系のラプラス方程式を解く時に役立つ。解は次の通りです

$$ \begin{align*} y &= P_{l}^{m}(\cos \theta) \\ &= (1-\cos ^{2}\theta)^{\frac{|m|}{2}} \frac{ d^{|m|} }{ dx^{|m|} } P_{l}(\cos\theta) \end{align*} $$

$P_{l}^{m}(x)$は関連するルジャンドル多項式と言い、$P_{l}(x)$はルジャンドル多項式と言う。

$$ P_{l}(x)=\dfrac{1}{2^l l!} \dfrac{d^l}{dx^l}(x^2-1)^l $$

導出

関連するルジャンドルの微分方程式は以下の通りです。

$$ (1-x^{2})\frac{ d^{2}y }{ dx^{2} }-2x \frac{dy}{dx}+\left( \frac{-m^{2}}{1-x^{2}}+l(l+1)\right)y=0 \tag{3} $$

$x=\cos \theta$を$dx=-\sin \theta d\theta$に代入すると、以下を得る。

$$ \frac{dy}{dx}=\frac{dy}{d\theta}\frac{ d \theta }{ dx }=-\frac{1}{\sin \theta}\frac{ dy }{ d\theta } $$

そして以下のように計算される。

$$ \begin{align*} \frac{ d ^{2} y}{ d^{2}x } &= \frac{ d }{ dx }\left( -\frac{1}{\sin \theta} \frac{ d y}{ d\theta }\right) \\ &= \frac{ d }{ d\theta }\left( -\frac{1}{\sin \theta} \frac{ d y}{ d\theta }\right)\frac{ d \theta }{ dx } \\ &= \left( \frac{\cos \theta}{\sin^{2} \theta} \frac{ d y}{ d\theta } -\frac{1}{\sin \theta}\frac{ d^{2}y }{ d\theta^{2} }\right)\left( -\frac{1}{\sin \theta} \right) \\ &= \frac{1}{\sin ^{2} \theta} \left( \frac{ d ^{2}y }{ d \theta^{2} }-\cot\theta \frac{ d y}{ d\theta }\right) \end{align*} $$

したがってこれを$(3)$に代入すると、以下のようになる。

$$ (1-\cos ^{2 \theta})\left( \frac{1}{\sin ^{2}\theta}\left(\frac{ d ^{2}y }{ d\theta ^{2} }-\cot \theta \frac{ d y}{ d\theta }\right) \right)+2\frac{\cos \theta}{\sin \theta}\frac{ d y}{ d \theta }+\left( \frac{-m^{2}}{1-\cos ^{2}\theta} +l(l+1)\right)y=0 $$

整理すると$(1)$を得る。

$$ \begin{align*} &&\frac{ d ^{2}y}{ d \theta^{2} }-\cot \theta \frac{ d y}{ d\theta } + 2\cot \theta \frac{ d y}{ d\theta } +\left( \frac{-m^{2}}{\sin^{2} \theta} +l(l+1)\right)y=0 \\ \implies& &\frac{ d ^{2}y}{ d \theta^{2} }+\cot \theta \frac{ d y}{ d\theta } +\left( \frac{-m^{2}}{\sin ^{2}\theta} +l(l+1)\right)y=0 \end{align*} $$

二次項と一次項をまとめると$(2)$を得る

$$ \frac{1}{\sin \theta} \left( \sin \theta \frac{ d y}{ d\theta } \right)+\left( \frac{-m^{2}}{\sin ^{2}\theta} +l(l+1)\right)y=0 $$