指数分布
📂確率分布論指数分布
定義

λ>0に対して、以下の確率密度関数を持つ連続確率分布exp(λ)を指数分布exponential distributionと呼ぶ。
f(x)=λe−λx,x≥0
- 本によっては、パラメーターがその逆数 θ=λ1 を使うこともある。
基本性質
モーメント生成関数
- [1]: m(t)=λ−tλ,t<λ
- [2]: X∼exp(λ)の場合
E(X)=Var(X)=λ1λ21
- [3]: ランダムサンプル X:=(X1,⋯,Xn)∼exp(λ)が与えられたとする。
λに対する十分統計量Tと最尤推定量λ^は以下のとおりである。
T=λ^=k=1∑nXk∑k=1nXkn
定理
- [a]: X∼exp(λ)の場合
P(X≥s+t∣X≥s)=P(X≥t)
- [b]: Γ(1,λ1)⟺exp(λ)
- f(x)=θk(θx)k−1e−(x/θ)k,x≥0
説明
幾何分布との関係
指数分布は、注目する事象が発生するまでの時間が従う分布で、幾何分布の連続化とも見なせる。幾何分布の発生回数に対する一般化として負の二項分布を考えることができるが、指数分布の発生回数に対する一般化はガンマ分布とも言えるだろう。
ポアソン分布との関係
一方、ポアソン分布と指数分布は似た現象に注目しているが、それぞれ単位時間あたりの事象の発生回数、事象が発生するまでの時間に関心があるという違いがある。この二つの分布の関係は、本の中にはこれら二つの分布で同じギリシャ文字λを使うこともある理由である。特に、ポアソン分布の平均がλ、指数分布の平均がλ1であることを考えると、二つの分布の関係はある種の「逆」のように受け取ることができるだろう。
証明
[1]
t<λの時のみ
m(t)=====∫0∞etxf(x)dx∫0∞etxλe−λxdxλ∫0∞e(t−λ)xdxλt−λ1[0−1]λ−tλ
■
[2]
直接導出する。
■
[3]
直接導出する。
■
[a]
条件付き確率で導出する。
■
[b]
モーメント生成関数で示す。
■
確率密度関数から明らかである。
■
可視化
以下は、指数分布の確率密度関数をアニメーションGIFで示すJuliaのコードです。
@time using LaTeXStrings
@time using Distributions
@time using Plots
cd(@__DIR__)
x = 0:0.1:10
Λ = collect(0.1:0.1:5.0); append!(Λ, reverse(Λ))
animation = @animate for λ ∈ Λ
plot(x, pdf.(Exponential(λ), x),
color = :black,
label = "λ = $(round(λ, digits = 2))", size = (400,300))
xlims!(0,10); ylims!(0,0.5); title!(L"\mathrm{pdf\,of\,} \exp(\lambda)")
end
gif(animation, "pdf.gif")