コーシー積:収束する二つの冪級数の積
📂解析学 コーシー積:収束する二つの冪級数の積 定理 f ( x ) : = ∑ k = 0 ∞ a k x k f(x) : = \sum _{k=0}^{\infty} a_{k} x^{k} f ( x ) := ∑ k = 0 ∞ a k x k と g ( x ) : = ∑ k = 0 ∞ b k x k g(x) : = \sum_{k=0}^{\infty} b_{k} x^{k} g ( x ) := ∑ k = 0 ∞ b k x k の収束区間が ( − r , r ) (-r,r) ( − r , r ) で、c k : = ∑ j = 0 k a j b k − j c_{k} := \sum_{j=0}^{k} a_{j} b_{k-j} c k := ∑ j = 0 k a j b k − j とするなら、∑ k = 0 ∞ c k x k \sum_{k=0}^{\infty} c_{k} x^{k} ∑ k = 0 ∞ c k x k は収束区間 ( − r , r ) (-r,r) ( − r , r ) 上で f ( x ) g ( x ) f(x)g(x) f ( x ) g ( x ) に収束する。
説明 係数の積が自ら二つの関数の積の係数に収束することは、実に面白い。ただの多項式なら証明すら必要ないほど明白だけど、べき級数 は無限に多くの項を持っているからだ。
証明 x ∈ ( − r , r ) x \in (-r,r) x ∈ ( − r , r ) と n ∈ N n \in \mathbb{N} n ∈ N を一つずつ固定し、以下のように関数列を定義しよう。
f n ( x ) : = ∑ k = 0 n a k x k g n ( x ) : = ∑ k = 0 n b k x k h n ( x ) : = ∑ k = 0 n c k x k
\begin{align*}
f_{n} (x) : =& \sum_{k=0}^{n} a_{k} x^{k}
\\ g_{n} (x) : =& \sum_{k=0}^{n} b_{k} x^{k}
\\ h_{n} (x) : =& \sum_{k=0}^{n} c_{k} x^{k}
\end{align*}
f n ( x ) := g n ( x ) := h n ( x ) := k = 0 ∑ n a k x k k = 0 ∑ n b k x k k = 0 ∑ n c k x k
有限の項に対しては、加法の交換法則が成り立つため、
h n ( x ) = ∑ k = 0 n c k x k = ∑ k = 0 n ∑ j = 0 k a j b k − j x j x k − j = ∑ j = 0 0 a j b 0 − j x j x 0 − j + ∑ j = 0 1 a j b 1 − j x j x 1 − j + ⋯ + ∑ j = 0 n a j b n − j x j x n − j = + a 0 b 0 x 0 x 0 + a 0 b 1 x 0 x 1 + a 1 b 0 x 1 x 0 ⋮ + a 0 b n x 0 x n + a 1 b n − 1 x 1 x n − 1 + ⋯ + a n b n x n x 0 ( sum by column ) = a 0 x 0 ∑ k = 0 n b k x k + a 1 x 1 ∑ k = 1 n b k x k − 1 + ⋯ + a n x n ∑ k = n n b k x k − k = ∑ j = 0 n a j x j ∑ k = j n b k − j x k − j = ∑ j = 0 n a j x j g n − j ( x ) = ∑ j = 0 n a j x j [ g n − j ( x ) + g ( x ) − g ( x ) ] = g ( x ) ∑ j = 0 n a j x j + ∑ j = 0 n a j x j [ g n − j ( x ) − g ( x ) ] = g ( x ) f n ( x ) + ∑ j = 0 n a j x j [ g n − j ( x ) − g ( x ) ]
\begin{align*}
h_{n} (x) =& \sum_{k=0}^{n} c_{k} x^{k}
\\ =& \sum_{k=0}^{n} \sum_{j=0}^{k} a_{j} b_{k-j} x^{j} x^{k-j}
% \\ =& \sum_{k=0}^{n} \left[ a_{0} b_{k} x^{0} x^{k} + a_{1} b_{k-1} x^{1} x^{k-1} + \cdots + a_{k-1} b_{1} x^{1} x^{k-1} + a_{k} b_{0} x^{0} x^{k} \right]
\\ =& \sum_{j=0}^{0} a_{j} b_{0-j} x^{j} x^{0-j} + \sum_{j=0}^{1} a_{j} b_{1-j} x^{j} x^{1-j} + \cdots + \sum_{j=0}^{n} a_{j} b_{n-j} x^{j} x^{n-j}
\\ =& + a_{0} b_{0} x^{0} x^{0}
\\ & + a_{0} b_{1} x^{0} x^{1} + a_{1} b_{0} x^{1} x^{0}
\\ & \vdots
\\ & + a_{0} b_{n} x^{0} x^{n} + a_{1} b_{n-1} x^{1} x^{n-1} + \cdots + a_{n} b_{n} x^{n} x^{0}
\\ (\text{sum by column}) =& a_{0} x^{0} \sum_{k=0}^{n} b_{k} x^{k} + a_{1} x^{1} \sum_{k=1}^{n} b_{k} x^{k-1} + \cdots + a_{n} x^{n} \sum_{k=n}^{n} b_{k} x^{k-k}
\\ =& \sum_{j=0}^{n} a_{j} x^{j} \sum_{k=j}^{n} b_{k-j} x^{k-j}
\\ =& \sum_{j=0}^{n} a_{j} x^{j} g_{n-j} (x)
\\ =& \sum_{j=0}^{n} a_{j} x^{j} \left[ g_{n-j} (x) + g(x) - g(x) \right]
\\ =& g(x) \sum_{j=0}^{n} a_{j} x^{j} + \sum_{j=0}^{n} a_{j} x^{j} \left[ g_{n-j} (x) - g(x) \right]
\\ =& g(x) f_{n} (x) + \sum_{j=0}^{n} a_{j} x^{j} \left[ g_{n-j} (x) - g(x) \right]
\end{align*}
h n ( x ) = = = = ( sum by column ) = = = = = = k = 0 ∑ n c k x k k = 0 ∑ n j = 0 ∑ k a j b k − j x j x k − j j = 0 ∑ 0 a j b 0 − j x j x 0 − j + j = 0 ∑ 1 a j b 1 − j x j x 1 − j + ⋯ + j = 0 ∑ n a j b n − j x j x n − j + a 0 b 0 x 0 x 0 + a 0 b 1 x 0 x 1 + a 1 b 0 x 1 x 0 ⋮ + a 0 b n x 0 x n + a 1 b n − 1 x 1 x n − 1 + ⋯ + a n b n x n x 0 a 0 x 0 k = 0 ∑ n b k x k + a 1 x 1 k = 1 ∑ n b k x k − 1 + ⋯ + a n x n k = n ∑ n b k x k − k j = 0 ∑ n a j x j k = j ∑ n b k − j x k − j j = 0 ∑ n a j x j g n − j ( x ) j = 0 ∑ n a j x j [ g n − j ( x ) + g ( x ) − g ( x ) ] g ( x ) j = 0 ∑ n a j x j + j = 0 ∑ n a j x j [ g n − j ( x ) − g ( x ) ] g ( x ) f n ( x ) + j = 0 ∑ n a j x j [ g n − j ( x ) − g ( x ) ]
lim n → ∞ f n ( x ) = f ( x ) \lim _{n \to \infty} f_{n} (x) = f(x) lim n → ∞ f n ( x ) = f ( x ) であれば lim n → ∞ ∑ j = 0 n a j x j [ g n − j ( x ) − g ( x ) ] = 0 \lim _{n \to \infty} \sum_{j=0}^{n} a_{j} x^{j} \left[ g_{n-j} (x) - g(x) \right] = 0 lim n → ∞ ∑ j = 0 n a j x j [ g n − j ( x ) − g ( x ) ] = 0 であることを示すだけで良い。
任意の正の数 ε > 0 \varepsilon > 0 ε > 0 が与えられたとする。収束区間内で lim n → ∞ g n ( x ) = g ( x ) \lim _{n \to \infty} g_{n} (x) = g(x) lim n → ∞ g n ( x ) = g ( x ) かつ f ( x ) f(x) f ( x ) が絶対収束するので、全ての自然数 n > j n > j n > j について
∣ g n − j ( x ) − g ( x ) ∣ ≤ M
| g_{n- j } (x) - g (x) | \le M
∣ g n − j ( x ) − g ( x ) ∣ ≤ M
∑ k = 0 ∞ ∣ a k x k ∣ < M
\sum_{k=0}^{\infty} \left| a_{k} x^{k} \right| < M
k = 0 ∑ ∞ a k x k < M
を満たす M > 0 M > 0 M > 0 が存在する。同じ理由でこの M M M に対して
l ≥ N ⟹ ∣ g l ( x ) − g ( x ) ∣ < ε 2 M
l \ge N \implies | g_{ l } (x) - g (x) | < {{\varepsilon} \over {2M}}
l ≥ N ⟹ ∣ g l ( x ) − g ( x ) ∣ < 2 M ε
∑ k = N + 1 ∞ ∣ a k x k ∣ < ε 2 M
\sum_{k=N+1}^{\infty} \left| a_{k} x^{k} \right| < {{\varepsilon} \over {2M}}
k = N + 1 ∑ ∞ a k x k < 2 M ε
を満たす N ∈ N N \in \mathbb{N} N ∈ N を選ぶことができる。
今、n > 2 N n > 2N n > 2 N とすると、
∣ ∑ j = 0 n a j x j [ g n − j ( x ) − g ( x ) ] ∣ = ∣ ∑ j = 0 N a j x j [ g n − j ( x ) − g ( x ) ] + ∑ j = N + 1 n a j x j [ g n − j ( x ) − g ( x ) ] ∣ ≤ ∣ ∑ j = 0 N a j x j [ g n − j ( x ) − g ( x ) ] ∣ + ∣ ∑ j = N + 1 n a j x j [ g n − j ( x ) − g ( x ) ] ∣ ≤ ∑ j = 0 N ∣ a j x j ∣ ∣ g n − j ( x ) − g ( x ) ∣ + ∑ j = N + 1 n ∣ a j x j ∣ ∣ g n − j ( x ) − g ( x ) ∣ ≤ ε 2 M ∑ j = 0 N ∣ a j x j ∣ + M ∑ j = N + 1 n ∣ a j x j ∣ ≤ ε 2 M ⋅ M + M ⋅ ε 2 M ≤ ε 2 + ε 2 = ε
\begin{align*}
\left| \sum_{j=0}^{n} a_{j} x^{j} \left[ g_{n-j} (x) - g(x) \right] \right| =& \left| \sum_{j=0}^{N} a_{j} x^{j} \left[ g_{n-j} (x) - g(x) \right] + \sum_{j=N+1}^{n} a_{j} x^{j} \left[ g_{n-j} (x) - g(x) \right] \right|
\\ \le & \left| \sum_{j=0}^{N} a_{j} x^{j} \left[ g_{n-j} (x) - g(x) \right] \right| + \left| \sum_{j=N+1}^{n} a_{j} x^{j} \left[ g_{n-j} (x) - g(x) \right] \right|
\\ \le & \sum_{j=0}^{N} \left| a_{j} x^{j} \right| \left| g_{n-j} (x) - g(x) \right|+ \sum_{j=N+1}^{n} \left| a_{j} x^{j} \right| \left| g_{n-j} (x) - g(x) \right|
\\ \le & {{\varepsilon} \over {2M}} \sum_{j=0}^{N} \left| a_{j} x^{j} \right| + M \sum_{j=N+1}^{n} \left| a_{j} x^{j} \right|
\\ \le & {{\varepsilon} \over {2M}} \cdot M + M \cdot {{\varepsilon} \over {2M}}
\\ \le & {{\varepsilon} \over {2}} + {{\varepsilon} \over {2}}
\\ =& \varepsilon
\end{align*}
j = 0 ∑ n a j x j [ g n − j ( x ) − g ( x ) ] = ≤ ≤ ≤ ≤ ≤ = j = 0 ∑ N a j x j [ g n − j ( x ) − g ( x ) ] + j = N + 1 ∑ n a j x j [ g n − j ( x ) − g ( x ) ] j = 0 ∑ N a j x j [ g n − j ( x ) − g ( x ) ] + j = N + 1 ∑ n a j x j [ g n − j ( x ) − g ( x ) ] j = 0 ∑ N a j x j ∣ g n − j ( x ) − g ( x ) ∣ + j = N + 1 ∑ n a j x j ∣ g n − j ( x ) − g ( x ) ∣ 2 M ε j = 0 ∑ N a j x j + M j = N + 1 ∑ n a j x j 2 M ε ⋅ M + M ⋅ 2 M ε 2 ε + 2 ε ε
■