logo

体積内の電荷が受ける電磁気力 📂電磁気学

体積内の電荷が受ける電磁気力

概要1

体積V\mathcal{V}内の全ての電荷が受ける電磁力は以下の通りである。

F=STdaϵ0μ0ddtVSdτ \mathbf{F} =\oint_{\mathcal{S}} \mathbf{T} \cdot d\mathbf{a} -\epsilon_{0}\mu_{0}\dfrac{d}{dt}\int_{\mathcal{V}} \mathbf{S} d\tau

S\mathcal{S}は体積V\mathcal{V}の境界面であり、T\mathbf{T}は**マクスウェル応力テンソルS\mathbf{S}ポインティングベクトル**である。

導出

  • Part 1.

ローレンツ力の法則により、電荷が受ける力は

F=q(E+v×B) \mathbf{F}=q(\mathbf{E} + \mathbf{v} \times \mathbf{B})

電荷量を電荷密度で表すと、q=ρdτq=\int \rho d\tauになる

F=Vρ(E+v×B)dτ \mathbf{F}=\int_{\mathcal{V}} \rho (\mathbf{E} + \mathbf{v} \times \mathbf{B})d\tau

体積電流密度ρv=J\rho\mathbf{v}=\mathbf{J}であるから、

F=V(ρE+J×B)dτ \mathbf{F}=\int_{\mathcal{V}} (\rho\mathbf{E} + \mathbf{J} \times \mathbf{B})d\tau

両辺を微分して単位体積内の電荷が受ける力を表すと、

dFdτ=f=ρE+J×B \dfrac{d\mathbf{F}}{d \tau}=\mathbf{f}=\rho\mathbf{E} + \mathbf{J} \times \mathbf{B}

マクスウェルの方程式

(i) ρ=ϵ0E\mathrm{(i)}\ \rho=\epsilon_{0} \nabla \cdot \mathbf{E}, (iv) J=1μ0×Bϵ0Et\mathrm{(iv)}\ \mathbf{J}=\dfrac{1}{\mu_{0}}\nabla \times \mathbf{B}-\epsilon_{0}\dfrac{\partial \mathbf{E}}{\partial t}

マクスウェルの方程式を用いてf\mathbf{f}を電磁場だけで表すと、

f=ϵ0(E)E+1μ0(×B)×Bϵ0Et×B \begin{equation} \mathbf{f} = \epsilon_{0}(\nabla \cdot \mathbf{E})\mathbf{E} + \dfrac{1}{\mu_{0}}(\nabla \times \mathbf{B})\times \mathbf{B} - \epsilon_{0} \dfrac{\partial \mathbf{E}}{\partial t} \times \mathbf{B} \end{equation}

  • Part 2.

(1)(1)の右側の最後の項を修正するために、以下の式を見る。

t(E×B)=Et×B+E×Bt \dfrac{\partial}{\partial t}(\mathbf{E} \times \mathbf{B}) = \dfrac{\partial \mathbf{E}}{\partial t} \times \mathbf{B} + \mathbf{E} \times \dfrac{\partial \mathbf{B}}{\partial t}

ファラデーの法則

Bt=×E\frac{\partial \mathbf{B}}{\partial t}=-\nabla \times \mathbf{E}

ファラデーの法則を使って上の式を整理すると、

Et×B=t(E×B)+E×(×E) \dfrac{\partial \mathbf{E}}{\partial t} \times \mathbf{B} = \dfrac{\partial}{\partial t}(\mathbf{E} \times \mathbf{B}) + \mathbf{E} \times (\nabla \times \mathbf{E} )

これを(1)(1)に代入して整理すると、

f=ϵ0(E)E+1μ0(×B)×Bϵ0[t(E×B)+E×(×E)]=ϵ0[(E)EE×(×E)]1μ0[B×(×B)]ϵ0t(E×B) \begin{align} \mathbf{f} &= \epsilon_{0}(\nabla \cdot \mathbf{E})\mathbf{E} + \dfrac{1}{\mu_{0}}(\nabla \times \mathbf{B})\times \mathbf{B} - \epsilon_{0} \left[ \dfrac{\partial}{\partial t}(\mathbf{E} \times \mathbf{B}) + \mathbf{E} \times (\nabla \times \mathbf{E} ) \right] \nonumber \\ &= \epsilon_{0} \bigg[ (\nabla \cdot \mathbf{E})\mathbf{E} - \mathbf{E} \times (\nabla \times \mathbf{E}) \bigg] - \dfrac{1}{\mu_{0}} \bigg[ \mathbf{B} \times (\nabla \times \mathbf{B} ) \bigg] -\epsilon_{0}\dfrac{\partial}{\partial t}(\mathbf{E} \times \mathbf{B} ) \end{align}

  • Part 3.

式を対称的にするために、つまり、きれいにするために(2)(2)の二つ目の括弧の中に(B)B(\nabla \cdot \mathbf{B})\mathbf{B}を足そう。B=0\nabla \cdot \mathbf{B}=0であるため、問題はない。そうすると、

f=ϵ0[(E)EE×(×E)]+1μ0[(B)BB×(×B)]ϵ0t(E×B) \begin{equation} \begin{aligned} \mathbf{f} &= \epsilon_{0} \bigg[ (\nabla \cdot \mathbf{E})\mathbf{E} - \mathbf{E} \times (\nabla \times \mathbf{E}) \bigg] + \dfrac{1}{\mu_{0}} \bigg[(\nabla \cdot \mathbf{B})\mathbf{B} - \mathbf{B} \times (\nabla \times \mathbf{B} ) \bigg] \\ &\quad -\epsilon_{0}\dfrac{\partial}{\partial t}(\mathbf{E} \times \mathbf{B}) \end{aligned} \end{equation}

乗法規則

(AB)=A×(×B)+B×(×A)+(A)B+(B)A \nabla(\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A})+(\mathbf{A} \cdot \nabla)\mathbf{B}+(\mathbf{B} \cdot \nabla) \mathbf{A}

また、乗法規則を使うと、

(AA)=(A2)=2(A)A+2A×(×A) \nabla(\mathbf{A} \cdot \mathbf{A} ) =\nabla(A^2) = 2(\mathbf{A} \cdot \nabla) \mathbf{A} + 2\mathbf{A} \times (\nabla \times \mathbf{A} )

このため、

{E×(×E)=(E)E+12(E2)B×(×B)=(B)B+12(B2) \begin{cases} \mathbf{E} \times (\nabla \times \mathbf{E} ) = -(\mathbf{E}\cdot\nabla) \mathbf{E} + \dfrac{1}{2}\nabla(E^2) \\ \mathbf{B} \times (\nabla \times \mathbf{B} ) = -(\mathbf{B}\cdot\nabla) \mathbf{B} +\dfrac{1}{2}\nabla(B^2) \end{cases} そして(3)(3)に代入すると、

f=ϵ0[(E)E+(E)E12(E2)]+1μ0[B)B+(B)B12(B2)]ϵ0t(E×B) \begin{align*} \mathbf{f} &= \epsilon_{0} \bigg[ (\nabla \cdot \mathbf{E})\mathbf{E} +(\mathbf{E}\cdot\nabla)\mathbf{E} - \dfrac{1}{2}\nabla(E^2) \bigg] + \dfrac{1}{\mu_{0}} \bigg[ \nabla \cdot \mathbf{B}) \mathbf{B} +(\mathbf{B}\cdot\nabla)\mathbf{B} -\dfrac{1}{2}\nabla(B^2) \bigg] -\epsilon_{0}\dfrac{\partial}{\partial t}(\mathbf{E} \times \mathbf{B} ) \end{align*}

式が複雑すぎるため、マクスウェルの応力テンソルT\mathbf{T}を使って最初の3項をT\nabla \cdot \mathbf{T}で表し、最後の項はポインティングベクトルS\mathbf{S}で表現すると、式の形は

f=Tϵ0μ0St \mathbf{f} = \nabla \cdot \mathbf{T} - \epsilon_{0}\mu_{0}\dfrac{\partial \mathbf{S}}{\partial t}

両辺を体積に対して積分し、右辺の最初の項に発散定理を使うと、

F=STdaϵ0μ0ddtVSdτ \mathbf{F} =\oint_{\mathcal{S}} \mathbf{T} \cdot d\mathbf{a} -\epsilon_{0}\mu_{0}\dfrac{d}{dt}\int_{\mathcal{V}} \mathbf{S} d\tau


  1. David J. Griffiths, 기초전자기학(Introduction to Electrodynamics, 김진승 역) (4th Edition1 2014), p388-390 ↩︎