logo

時系列分析におけるホワイトノイズ 📂統計的分析

時系列分析におけるホワイトノイズ

定義 1

iid (同一分布による独立変数)の確率変数 ete_{t} の数列 {et}t=1\left\{ e_{t} \right\}_{t = 1}^{\infty}ホワイトノイズwhite noiseと呼ぶ。


  • iidは、independent identically distributed(同一分布による独立)の略で、互いに独立でありながら、同じ分布を共有していることを意味する。

説明

確率変数の数列であるという定義に従って、自然に確率過程となる。特にE(et)=0E ( e_{t} ) = 0ならば、Yt:={e1,t=1Yt1+et,t1Y_{t} : = \begin{cases} e_{1} & , t=1 \\ Y_{t-1} + e_{t} & , t \ne 1 \\ \end{cases}として定義された確率過程{Yt}t=1\left\{ Y_{t} \right\}_{t = 1}^{\infty}ランダムウォークになる。

統計学では、観察された現象に対して100%完全な説明は不可能であると認識されている。問題が完全に説明できるのであれば、統計学を用いて解決する必要もなかったはずだ。どのようなモデルを立てても、避けられない誤差が発生し、統計学ではこれを「情報が不足していること」と受け取る。情報が多ければ多いほどいいが、宇宙の全てを知ることは不可能であり、実際に使用する際にはコストの問題も発生する。

そういう意味で、ホワイトノイズは時系列分析で発生する「避けられない誤差」と見なされる。データは理想的に作られたものではなく、現実から得られたものなので、必ず存在する。初めは無視できるかもしれないが、時間が経つにつれて蓄積され、かなり大きくなっているかもしれない。そのため、時系列分析における予測は、遠い未来になるほど信頼区間が広がり、その意味を失っていく。

参照


  1. Cryer. (2008). Time Series Analysis: With Applications in R(第2版): p17. ↩︎