logo

第一種および第二種チェビシェフ多項式の関係 📂数値解析

第一種および第二種チェビシェフ多項式の関係

定理

第1種チェビシェフ多項式 Tn(x)=cos(ncos1x)T_{n} (x) = \cos \left( n \cos^{-1} x \right)第2種チェビシェフ多項式 Un(x)=1n+1Tn+1(X)\displaystyle U_{n} (x) = {{1} \over {n+1} } T_{n+1} ’ (X) は、次の関係を持っている。

  • [1]: Un(x)Un2(x)=2Tn(X)U_{n} (x) - U_{n-2} (x) = 2 T_{n} (X)
  • [2]: Tn(x)Tn2(x)=2(x21)Un2(x)T_{n} (x) - T_{n-2} (x) = 2( x^2 - 1 ) U_{n-2} (x)

  • 通常、0θπ0 \le \theta \le \pi に対して、θ:=cos1x\theta := \cos^{-1} x とする。

証明

上記の式を証明するには、以下の事実が必須だ。

第2種チェビシェフ多項式の別の表現: Un(x)=sin((n+1)θ)sinθU_{n} (x) = {{\sin \left( ( n +1 ) \theta \right)} \over { \sin \theta }}

[1]

三角関数の和差公式により Un(x)Un2(x)=1sinθ[sin(n+1)θsin(n1)θ]=1sinθ2cos((n+1)+(n1)2θ)sin((n+1)(n1)2θ)=2sinθcosnθsinθ=2cosnθ=2Tn(x) \begin{align*} & U_{n} (x) - U_{n-2} (x) \\ =& {{1} \over { \sin \theta }} \left[ \sin (n+1) \theta - \sin (n-1) \theta \right] \\ =& {{1} \over { \sin \theta }} 2 \cos \left( {{ (n+1) + (n-1) } \over {2}} \theta \right) \sin \left( {{ (n+1) - (n-1) } \over {2}} \theta \right) \\ =& {{2} \over { \sin \theta }} \cos n \theta \sin \theta \\ =& 2 \cos n \theta \\ =& 2 T_{n} (x) \end{align*}

[2]

三角関数の加法定理により Tn±1(x)=cos(n±1)θ=cos(nθ)cosθsin(nθ)sinθ T_{n \pm 1} (x) = \cos (n \pm 1) \theta = \cos (n \theta ) \cos \theta \mp \sin ( n \theta ) \sin \theta 従って、 Tn1(x)Tn+1(x)=2sin(nθ)sinθ=2sin2θsin(nθ)sinθ=2sin2θUn1(x)=2(1x2)Un1(x) \begin{align*} & T_{n-1} (x) - T_{n+1} (x) \\ =& 2 \sin (n \theta ) \sin \theta \\ =& 2 \sin^2 \theta {{ \sin (n \theta ) } \over { \sin \theta}} \\ =& 2 \sin^2 \theta U_{n-1} (x) \\ =& 2 (1-x^2) U_{n-1} (x) \end{align*}

参照