logo

テイラーの定理の剰余項 📂微分積分学

テイラーの定理の剰余項

定義1 2

kk番の微分可能な関数ffについて、下のように定義されるPkP_{k}を点aaでのffテイラー多項式と言う。

Pk(x):=f(a)+f(a)(xa)+f(a)2!(xa)2++f(k)(a)k!(xa)k P_{k} (x) := f(a) + f^{\prime}(a) (x-a) + \dfrac{f^{\prime \prime}(a)}{2!}(x-a)^{2} + \cdots + \dfrac{f^{(k)}(a)}{k!}(x-a)^{k}

ffPkP_{k}の差を残余項と言う。

Rk(x)=f(x)Pk(x) R_{k}(x) = f(x) - P_{k}(x)

説明

f(x)=Pk(x)+Rk(x)=n=0kf(n)(a)n!(xa)n+Rk(x) f(x) = P_{k}(x) + R_{k}(x) = \sum \limits_{n=0}^{k} \dfrac{f^{(n)}(a)}{n!} (x-a)^{n} + R_{k}(x)

ffをテイラー多項式PkP_{k}と残りで整理すれば、残りRkR_{k}ffkk回目の導関数までの展開で近似したときの誤差になる。

ペアノ形式

Rk(x)=o((xa)k)R_{k}(x) = \mathcal{o}((x-a)^{k})のような残余をペアノ形式の残余と言う。

f(x)=n=0kf(n)(a)n!(xa)n+o((xa)k) f(x) = \sum \limits_{n=0}^{k} \dfrac{f^{(n)}(a)}{n!} (x-a)^{n} + \mathcal{o}((x-a)^{k})

この時o((xa)k)\mathcal{o}((x-a)^{k})limxag(x)(xa)k=0\lim \limits_{x \to a} \dfrac{g(x)}{(x-a)^{k}} = 0を満たす任意の関数ggを意味する。主に残余を具体的に明記せずにだいたい書きたいときに使用する。

ラグランジュ形式

Rk(x)=f(k+1)(ξ)(k+1)!(xa)k+1R_{k}(x) = \dfrac{f^{(k+1)}(\xi)}{(k+1)!} (x-a)^{k+1}のような残余をラグランジュ形式の残余と言う。

f(x)=n=0kf(n)(a)n!(xa)n+f(k+1)(ξ)(k+1)!(xa)k+1for some ξ(x,a) f(x) = \sum \limits_{n=0}^{k} \dfrac{f^{(n)}(a)}{n!} (x-a)^{n} + \dfrac{f^{(k+1)}(\xi)}{(k+1)!} (x-a)^{k+1} \quad \text{for some } \xi \in (x,a)

ペアノ形式と一緒によく使われる形の一つだ。k=0k=0を代入すると平均値の定理になる。

f(x)=f(a)+f(ξ)(xa)    f(x)f(a)xa=f(ξ) f(x) = f(a) + f^{\prime}(\xi)(x-a) \implies \dfrac{f(x) - f(a)}{x-a} = f^{\prime}(\xi)

以下のような代わりの方程式を導出できる:

  • nnの場合 f(x+p)=k=0n1f(k)(x)k!pn+1n!f(n)(x+ξp)pnfor some ξ(0,1) f(x + p) = \sum\limits_{k=0}^{n-1} \dfrac{f^{(k)}(x)}{k!}p^{n} + \dfrac{1}{n!}f^{(n)}(x + \xi p) p^{n} \quad \text{for some } \xi \in (0,1)

  • n=1n=1 f(x+p)=f(x)+pf(x+ξp)for some ξ(0,1) f(x + p) = f(x) + pf^{\prime}(x + \xi p) \quad \text{for some } \xi \in (0,1)

  • n=2n=2 f(x+p)=f(x)+pf(x)+12!p2f(x+ξp)for some ξ(0,1) f(x + p) = f(x) + pf^{\prime}(x) + \dfrac{1}{2!}p^{2} f^{\prime \prime}(x + \xi p) \quad \text{for some } \xi \in (0,1)

導出3

証明方法は変わらないので、n=2n=2の場合のみ示す。適切なggに対して残余をラグランジュ形式でテイラー展開すれば、

g(t1)=g(t0)+g(t0)(t1t0)+12!g(ξ)(t1t0)2for some ξ(t0,t1) g(t_{1}) = g(t_{0}) + g^{\prime}(t_{0}) (t_{1} - t_{0}) + \dfrac{1}{2!}g^{\prime \prime}(\xi) (t_{1} - t_{0})^{2} \quad \text{for some } \xi \in (t_{0},t_{1})

ここでt0=0t_{0}=0t1=1t_{1}=1を代入すると、

g(1)=g(0)+g(0)+12!g(ξ)for some ξ(0,1) g(1) = g(0) + g^{\prime}(0) + \dfrac{1}{2!}g^{\prime \prime}(\xi) \quad \text{for some } \xi \in (0,1)

g(ξ)=f(x+ξp)g(\xi) = f(x + \xi p)とすると、g(ξ)=pf(x+ξp)g^{\prime}(\xi) = pf^{\prime}(x + \xi p)g(ξ)=p2f(x+ξp)g^{\prime \prime}(\xi) = p^{2}f^{\prime \prime}(x + \xi p)なので

f(x+p)=f(x)+pf(x)+12!p2f(x+ξp)for some ξ(0,1) f(x + p) = f(x) + pf^{\prime}(x) + \dfrac{1}{2!}p^{2} f^{\prime \prime}(x + \xi p) \quad \text{for some } \xi \in (0,1)

コーシー形式

Rk(x)=f(k+1)(ξ)k!(xξ)k(xa)R_{k}(x) = \dfrac{f^{(k+1)}(\xi)}{k!} (x-\xi)^{k} (x-a)のような残余をコーシー形式の残余と言う。

f(x)=n=0kf(n)(a)n!(xa)n+f(k+1)(ξ)k!(xξ)k(xa)for some ξ(x,a) f(x) = \sum \limits_{n=0}^{k} \dfrac{f^{(n)}(a)}{n!} (x-a)^{n} + \dfrac{f^{(k+1)}(\xi)}{k!} (x-\xi)^{k} (x-a) \quad \text{for some } \xi \in (x,a)

積分形式

Rk(x)=axf(k+1)(t)k!(xt)kdt\displaystyle R_{k}(x) = \int_{a}^{x} \dfrac{f^{(k+1)}(t)}{k!} (x-t)^{k} dt積分形式の残余と言う。

f(x)=n=0kf(n)(a)n!(xa)n+axf(k+1)(t)k!(xt)kdt \begin{equation} f(x) = \sum \limits_{n=0}^{k} \dfrac{f^{(n)}(a)}{n!} (x-a)^{n} + \int_{a}^{x} \dfrac{f^{(k+1)}(t)}{k!} (x-t)^{k} dt \end{equation}

f(x+p)=n=0kf(n)(x)n!pn+01f(k+1)(x+tp)k!(1t)kdtpk+1 \begin{equation} f(x + p) = \sum \limits_{n=0}^{k} \dfrac{f^{(n)}(x)}{n!} p^{n} + \int_{0}^{1} \dfrac{f^{(k+1)}(x + tp)}{k!} (1-t)^{k} dt p^{k+1} \end{equation}

導出

(1)

微分積分学の基本定理によって

f(x)f(a)=axf(t1)dt1    f(x)=f(a)+axf(t1)dt1 \begin{equation} f(x) - f(a) = \int_{a}^{x} f^{\prime}(t_{1})dt_{1} \implies f(x) = f(a) + \int_{a}^{x} f^{\prime}(t_{1})dt_{1} \end{equation}

これをf(t1)f^{\prime}(t_{1})にも適用すれば、

f(t1)=f(a)+at1f(t2)dt2 \begin{equation} f^{\prime}(t_{1}) = f^{\prime}(a) + \int_{a}^{t_{1}} f^{\prime \prime}(t_{2})dt_{2} \end{equation}

(4)(4)(3)(3)に代入すれば、

f(x)=f(a)+ax(f(a)+at1f(t2)dt2)dt1=f(a)+f(a)(xa)+axat1f(t2)dt2dt1=f(a)+f(a)(xa)+axat1f(t2)dt2dt1 \begin{align*} f(x) &= f(a) + \int_{a}^{x} \left( f^{\prime}(a) + \int_{a}^{t_{1}} f^{\prime \prime}(t_{2})dt_{2} \right) dt_{1} \\ &= f(a) + f^{\prime}(a) (x-a) + \int_{a}^{x} \int_{a}^{t_{1}} f^{\prime \prime}(t_{2})dt_{2} dt_{1} \\ &= f(a) + f^{\prime}(a) (x-a) + \int_{a}^{x} \int_{a}^{t_{1}} f^{\prime \prime}(t_{2})dt_{2} dt_{1} \\ \end{align*}

f(t2)f^{\prime \prime}(t_{2})はまた以下のようである。

f(t2)=f(a)+at2f(t3)dt3 f^{\prime \prime}(t_{2}) = f^{\prime \prime}(a) + \int_{a}^{t_{2}} f^{\prime \prime \prime}(t_{3})dt_{3}

この式に代入すれば、

f(x)=f(a)+f(a)(xa)+axat1f(t2)dt2dt1=f(a)+f(a)(xa)+axat1(f(a)+at2f(t3)dt3)dt2dt1=f(a)+f(a)(xa)+axat1f(a)dt2dt1+axat1at2f(t3)dt3dt2dt1=f(a)+f(a)(xa)+f(a)2(xa)2+axat1at2f(t3)dt3dt2dt1 \begin{align*} f(x) &= f(a) + f^{\prime}(a) (x-a) + \int_{a}^{x} \int_{a}^{t_{1}} f^{\prime \prime}(t_{2})dt_{2} dt_{1} \\ &= f(a) + f^{\prime}(a) (x-a) + \int_{a}^{x} \int_{a}^{t_{1}} \left( f^{\prime \prime}(a) + \int_{a}^{t_{2}} f^{\prime \prime \prime}(t_{3})dt_{3} \right)dt_{2} dt_{1} \\ &= f(a) + f^{\prime}(a) (x-a) + \int_{a}^{x} \int_{a}^{t_{1}} f^{\prime \prime}(a) dt_{2} dt_{1} + \int_{a}^{x}\int_{a}^{t_{1}}\int_{a}^{t_{2}} f^{\prime \prime \prime}(t_{3})dt_{3} dt_{2} dt_{1} \\ &= f(a) + f^{\prime}(a) (x-a) + \frac{f^{\prime \prime}(a)}{2}(x-a)^{2} + \int_{a}^{x}\int_{a}^{t_{1}}\int_{a}^{t_{2}} f^{\prime \prime \prime}(t_{3})dt_{3} dt_{2} dt_{1} \\ \end{align*}

これを繰り返すと、

f(x)=n=0kf(n)(a)n!(xa)n+axatkf(k+1)(tk+1)dtk+1dt1 f(x) = \sum \limits_{n=0}^{k} \dfrac{f^{(n)}(a)}{n!} (x-a)^{n} + \int_{a}^{x} \cdots \int_{a}^{t_{k}} f^{(k+1)}(t_{k+1})dt_{k+1} \cdots dt_{1} \\

後ろの積分を見れば、簡単に積分が2つある時を考えると、以下のように積分の順序と範囲を変えることができる。

axat1f(t2)dt2dt1=axt2xf(t2)dt1dt2 \int_{a}^{x} \int_{a}^{t_{1}} f^{\prime \prime}(t_{2})dt_{2} dt_{1} = \int_{a}^{x} \int_{t_{2}}^{x} f^{\prime \prime}(t_{2})dt_{1} dt_{2}

{a<t2<t1a<t1<x={a<t2<xt2<t1<x \begin{cases} a \lt t_{2} \lt t_{1} \\ a \lt t_{1} \lt x \end{cases} = \begin{cases} a \lt t_{2} \lt x \\ t_{2} \lt t_{1} \lt x \end{cases}

従って、後ろの積分項は、

axat1atk1atkf(k+1)(tk+1)dtk+1dtkdt2dt1=axtk+1xt3xt2xf(k+1)(tk+1)dt1dt2dtkdtk+1=axf(k+1)(tk+1)tk+1xt3xt2xdt1dt2dtkdtk+1=axf(k+1)(tk+1)(xtk+1)kk!dtk+1=axf(k+1)(t)(xt)kk!dt \begin{align*} &\int_{a}^{x} \int_{a}^{t_{1}} \cdots \int_{a}^{t_{k-1}} \int_{a}^{t_{k}} f^{(k+1)}(t_{k+1})dt_{k+1}dt_{k} \cdots dt_{2} dt_{1} \\ &=\int_{a}^{x} \int_{t_{k+1}}^{x} \cdots \int_{t_{3}}^{x} \int_{t_{2}}^{x} f^{(k+1)}(t_{k+1})dt_{1}dt_{2} \cdots dt_{k} dt_{k+1} \\ &=\int_{a}^{x} f^{(k+1)}(t_{k+1}) \int_{t_{k+1}}^{x} \cdots \int_{t_{3}}^{x} \int_{t_{2}}^{x} dt_{1}dt_{2} \cdots dt_{k} dt_{k+1} \\ &=\int_{a}^{x} f^{(k+1)}(t_{k+1}) \dfrac{(x-t_{k+1})^{k}}{k!} dt_{k+1} \\ &=\int_{a}^{x} f^{(k+1)}(t) \dfrac{(x-t)^{k}}{k!} dt \end{align*}

(2)

(1)(1)γ\gammaに対して使うと、

γ(s1)=n=0kγ(n)(s0)n!(s1s0)n+s0s1γ(k+1)(t)k!(s1t)kdt \gamma (s_{1}) = \sum \limits_{n=0}^{k} \dfrac{\gamma^{(n)}(s_{0})}{n!} (s_{1}-s_{0})^{n} + \int_{s_{0}}^{s_{1}} \dfrac{\gamma^{(k+1)}(t)}{k!} (s_{1}-t)^{k} dt

s1=1s_{1} = 1s0=0s_{0}=0を代入すると、

γ(1)=n=0kγ(n)(0)n!+01γ(k+1)(t)k!(1t)kdt \gamma (1) = \sum \limits_{n=0}^{k} \dfrac{\gamma^{(n)}(0)}{n!} + \int_{0}^{1} \dfrac{\gamma^{(k+1)}(t)}{k!} (1-t)^{k} dt

γ(t)=f(x+tp)\gamma (t) = f(x + tp)と置くと、γ(n)(t)=dnγ(t)dtn=pnf(n)(x+tp)\gamma ^{(n)}(t) = \frac{d^{n} \gamma (t)}{d t^{n}} = p^{n}f^{(n)}(x +tp)であるため、

f(x+p)=n=0kf(n)(x)n!pn+01f(k+1)(x+tp)k!(1t)kdtpk+1 f(x + p) = \sum \limits_{n=0}^{k} \dfrac{f^{(n)}(x)}{n!} p^{n} + \int_{0}^{1} \dfrac{f^{(k+1)}(x + tp)}{k!} (1-t)^{k} dt p^{k+1}