正規分布のエントロピー
定理
正規分布 $N(\mu, \sigma^{2})$のエントロピーは(自然対数を選んだ場合)以下の通りです。
$$ H = \dfrac{1}{2} \ln (2\pi e \sigma^{2}) = \ln \sqrt{2\pi e \sigma^{2}} $$
多変量正規分布 $N_{p}(\boldsymbol{\mu}, \Sigma)$のエントロピーは以下の通りです。
$$ H = \dfrac{1}{2}\ln \left[ (2 \pi e)^{p} \left| \Sigma \right| \right] = \dfrac{1}{2}\ln (\det (2\pi e \Sigma)) $$
$\left| \Sigma \right|$は共分散行列の行列式です。
説明
平均 $\mu$はエントロピーに影響を与えません。自然対数を選んだ場合、標準正規分布 $N(0,1)$のエントロピーはおおよそ $H = \ln \sqrt{2\pi e } \approx 1.4189385332046727$です。底が$2$のログを選んでも式の形はそのままであり、その値は以下の通りです。
$$ H = \log_{2} \sqrt{2\pi e } \approx 2.047095585180641 $$
証明
一変量正規分布
これを示す時、$p(x) = \dfrac{1}{\sqrt{2\pi\sigma^{2}}}\exp\left( - \dfrac{(x-\mu)^{2}}{2\sigma^{2}} \right)$の積分が$1$であることを利用します。
$$ \begin{align*} H &= - \int_{-\infty}^{\infty} p(x) \ln p(x) dx \\ &= - \int_{-\infty}^{\infty} p(x) \ln \left[ \dfrac{1}{\sqrt{2\pi\sigma^{2}}}\exp\left( - \dfrac{(x-\mu)^{2}}{2\sigma^{2}} \right) \right] dx \\ &= - \int_{-\infty}^{\infty} p(x) \ln \dfrac{1}{\sqrt{2\pi\sigma^{2}}} dx - \int_{-\infty}^{\infty} p(x) \ln \exp\left( - \dfrac{(x-\mu)^{2}}{2\sigma^{2}} \right) dx \\ &= -\ln \dfrac{1}{\sqrt{2\pi\sigma^{2}}} + \int_{-\infty}^{\infty} p(x) \dfrac{(x-\mu)^{2}}{2\sigma^{2}} dx \\ &= \ln \sqrt{2\pi\sigma^{2}} + \dfrac{1}{2\sigma^{2}}\int_{-\infty}^{\infty} p(x) (x-\mu)^{2} dx \\ &= \ln \sqrt{2\pi\sigma^{2}} + \dfrac{1}{2\sigma^{2}} E[(X-\mu)^{2}] \\ &= \ln \sqrt{2\pi\sigma^{2}} + \dfrac{1}{2\sigma^{2}}\sigma^{2} \\ &= \ln \sqrt{2\pi\sigma^{2}} + \dfrac{1}{2} \\ &= \ln \sqrt{2\pi\sigma^{2}} + \ln \sqrt{e} \\ &= \ln \sqrt{2\pi e \sigma^{2}} \end{align*} $$
■
多変量正規分布
多変量正規分布の確率密度関数は$p(\mathbf{x}) = \dfrac{1}{\sqrt{(2\pi)^{p} \left| \Sigma \right|}} \exp \left( -\dfrac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{T} \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right)$なので、
$$ \begin{align*} H(p) &= -\int p(\mathbf{x}) \ln(p(\mathbf{x}))d \mathbf{x} \\ &= -\int p(\mathbf{x}) \ln \left[ \dfrac{1}{\sqrt{(2\pi)^{p} \left| \Sigma \right|}} \exp \left( -\dfrac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{T} \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right) \right] \\ &= -\int p(\mathbf{x}) \ln\left( \dfrac{1}{\sqrt{(2\pi)^{p} \left| \Sigma \right|}} \right)d \mathbf{x} + \dfrac{1}{2}\int p(\mathbf{x}) (\mathbf{x} - \boldsymbol{\mu})^{T} \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})d \mathbf{x} \\ &= -\ln\left( \dfrac{1}{\sqrt{(2\pi)^{p} \left| \Sigma \right|}} \right)\int p(\mathbf{x}) d \mathbf{x} + \dfrac{1}{2} E \left[ (\mathbf{x} - \boldsymbol{\mu})^{T} \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right] \\ &= -\ln\left( \dfrac{1}{\sqrt{(2\pi)^{p} \left| \Sigma \right|}} \right) + \dfrac{1}{2} E \left[ (\mathbf{x} - \boldsymbol{\mu})^{T} \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right] \end{align*} $$
二番目の項は以下のように計算されます。
$$ \begin{align*} E \left[ (\mathbf{x} - \boldsymbol{\mu})^{T} \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right] &= E \left[ \tr \left( (\mathbf{x} - \boldsymbol{\mu})^{T} \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right) \right] \\ &= E \left[ \tr \left( \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{T} \right) \right] \\ &= \tr \left[ E \left( \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{T} \right) \right] \\ &= \tr \left[ \Sigma^{-1} E \left( (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{T} \right) \right] \\ &= \tr \left[ \Sigma^{-1} \Sigma \right] \\ &= \tr \left[ I_{p\times p} \right] \\ &= p \end{align*} $$
- 最初の等号は、$1 \times 1$行列$A$に対して$A = \tr(A)$であるからです。
- 二番目の等号は、トレースの巡回性によります。
- 三番目の等号は、期待値とトレースは交換可能であるからです。
- 四番目の等号は、行列の期待値の性質によります。
- 五番目の等号は、共分散行列の定義により成り立ちます。
したがって、エントロピーは以下のようになります。
$$ \begin{align*} H(p) &= -\ln\left( \dfrac{1}{\sqrt{(2\pi)^{p} \left| \Sigma \right|}} \right) + \dfrac{1}{2} E \left[ (\mathbf{x} - \boldsymbol{\mu})^{T} \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right] \\ &= \dfrac{1}{2} \ln \left[ (2\pi)^{p} \left| \Sigma \right| \right] + \dfrac{1}{2}p \\ &= \dfrac{1}{2} \ln \left[ (2\pi)^{p} \left| \Sigma \right| \right] + \dfrac{1}{2}\ln e^{p} \\ &= \dfrac{1}{2} \ln \left[ (2\pi e)^{p} \left| \Sigma \right| \right] \end{align*} $$
■