古典情報理論における相対エントロピー(クルバック・ライブラー発散)とは?
離散確率変数の確率質量関数 $p, q$について、$p$に対する$q$の相対的エントロピーrelative entropyを次のように定義する。
$$ D(p \| q) := \sum p(x) \log_{2} \dfrac{p(x)}{q(x)} \tag{1} $$
この時$p \ne 0$に対して、$p \log_{2}(\frac{p}{0}) := \infty$と定義される。
連続確率変数に対しては積分で定義される。
$$ D(p \| q) := \int p(x) \ln \dfrac{p(x)}{q(x)} dx $$
説明
相対的エントロピーは、クルバック・ライブラー発散Kullback-Leibler divergence (KLd)とも呼ばれ、以下のような表記が用いられる。
$$ D(p \| q) = D_{\text{KL}}(p \| q) = H(p \| q) $$
$D(p \| q)$は($X$の実際の分布が$p$の時)$X$の分布を$q$と仮定することがどれほど不適切か、つまり$q$が$p$とどれほど違うかを測る尺度だ。$-\log q$が$q$の情報量を意味するので、定義$(1)$は$q$と$p$の情報の平均差を意味する。
$$ \begin{align*} \sum p(x) \log_{2} \dfrac{p(x)}{q(x)} &= \sum p(x) \big[ -\log_{2}q(x) - (-\log_{2}p(x)) \big] \\ &= \sum p(x) \big[ I(q(x)) - I(p(x)) \big] \\ &= E \big[ I(q) - I(p) \big] \end{align*} $$
特性
非対称性Non-symmetry $$ D(p \| q) \ne D(q \| p) $$
非負性 $$ D(p \| q) \ge 0 $$ 等号は$p = q$の場合に成立する。
証明
2.
$p=q$であれば、定義により$D(p \| q) = 0$なので$p \ne q$について考えよう。
$$ \begin{align*} -D(p \| q) &= \sum p(x) \log_{2} \dfrac{q(x)}{p(x)} \\ &\le \log_{2} \left( \sum p(x) \dfrac{q(x)}{p(x)} \right) \\ &= \log_{2} \left( \sum q(x) \right) \\ &= \log_{2} 1 \\ &= 0 \end{align*} $$
不等式は、対数関数が凹であるため、イェンセンの不等式により成立する。
イェンセンの不等式
$f$が凹関数であれば、次が成立する。$\sum_{k=1}^{n} \lambda_{k} = 1$に対して、
$$ f\left( \sum\limits_{k=1}^{n}\lambda_{k}x_{k} \right) \ge \sum\limits_{k=1}^{n} \lambda_{k} f(x_{k}) $$
したがって、両辺にマイナスをかけると、
$$ 0 \le D(p \| q) $$
■