logo

k形式の外微分 📂幾何学

k形式の外微分

定義1

ω=IaIdxI\omega = \sum\limits_{I} a_{I} dx_{I}nn次元の微分多様体MM上のkk-形式とする。ω\omega外微分dωd\omegaを次のように定義する。

dω:=IdaIdxI d\omega := \sum\limits_{I} da_{I} \wedge dx_{I}

ここで、\wedgeくさび積だ。

説明

daIda_{I}11-形式であり、dxIdx_{I}kk-形式であるから、dωd\omega(k+1)(k+1)-形式だ。

ω\omegaを以下のように与えられたR3\mathbb{R}^{3}11-形式とする。

ω=xyzdx+yzdy+(x+z)dz \omega = xyz dx + yz dy + (x + z)dz

すると、dωd\omegaは次のようになる。

dω=d(xyz)dx+d(yz)dy+d(x+z)dz=(yzdx+xzdy+xydz)dx+(zdy+ydz)dy+(dx+dz)dz=xzdydx+xydzdx+ydzdy+dxdz=xzdxdyxydxdzydydz+dxdz=xzdxdy+(1xy)dxdzydydz \begin{align*} d\omega &= d(xyz) \wedge dx + d(yz) \wedge dy + d(x+z)\wedge dz \\ &= (yzdx + xzdy + xydz) \wedge dx + (zdy + ydz) \wedge dy + (dx + dz) \wedge dz \\ &= xzdy \wedge dx + xydz \wedge dx + ydz \wedge dy + dx \wedge dz \\ &= -xzdx \wedge dy - xydx \wedge dz - ydy \wedge dz + dx \wedge dz \\ &= -xzdx \wedge dy + (1 - xy) dx \wedge dz - ydy \wedge dz \end{align*}

性質

(a) ω1,ω2\omega_{1}, \omega_{2}kk-形式のとき、

d(ω1+ω2)=dω1+dω2 d(\omega_{1} + \omega_{2}) = d\omega_{1} + d\omega_{2}

(b) ω\omegakk-形式で、φ\varphiss-形式のとき、

d(ωφ)=dωφ+(1)kωdφ d(\omega \wedge \varphi) = d\omega \wedge \varphi + (-1)^{k}\omega \wedge d\varphi

(c) d(dω)=d2ω=0d(d\omega) = d^{2}\omega = 0

(d) N,MN, Mがそれぞれn,mn, m次元の微分多様体で、ω\omegaMM上のkk-形式、f:NMf : N \to M微分可能な関数のとき、

d(fω)=f(dω) d(f^{\ast} \omega) = f^{\ast}(d\omega)

ここで、fωf^{\ast}\omegaω\omegaプルバックだ。

証明

(a)

ω1=IaIdxI\omega_{1} = \sum\limits_{I}a_{I}dx_{I}ω2=IbIdxI\omega_{2} = \sum\limits_{I}b_{I}dx_{I}とする。それでは、微分形式の和とくさび積の性質により、

d(ω1+ω2)=d(I(aI+bI)dxI)=Id(aI+bI)dxI=I(daI+dbI)dxI=I(daIdxI+dbIdxI)=IdaIdxI+IdbIdxI=dω1+dω2 \begin{align*} d(\omega_{1} + \omega_{2}) &= d\left( \sum\limits_{I}(a_{I} + b_{I})dx_{I} \right) \\ &= \sum\limits_{I} d (a_{I} + b_{I}) \wedge dx_{I} \\ &= \sum\limits_{I} (d a_{I} + d b_{I}) \wedge dx_{I} \\ &= \sum\limits_{I} (d a_{I} \wedge dx_{I} + d b_{I} \wedge dx_{I}) \\ &= \sum\limits_{I} d a_{I} \wedge dx_{I} + \sum\limits_{I} d b_{I} \wedge dx_{I} \\ &= d\omega_{1} + d\omega_{2} \end{align*}

(b)

ω=IaIdxI\omega = \sum\limits_{I}a_{I}dx_{I}φ=JbJdxJ\varphi = \sum\limits_{J}b_{J}dx_{J}とする。それでは、

d(ωφ)=d(IaIdxIJbJdxJ)=d(I,JaIbJdxIdxJ)=I,Jd(aIbJ)dxIdxJ=I,J(bJdaI+aIdbJ)dxIdxJ=I,JbJdaIdxIdxJ+I,JaIdbJdxIdxJ=(IdaIdxI)JbJdxJ+(1)kI,JaIdxIdbJdxJ=dωφ+(1)k(IaIdxI)(JdbJdxJ)=dωφ+(1)kωdφ \begin{align*} d(\omega \wedge \varphi) &= d\left( \sum\limits_{I}a_{I}dx_{I} \wedge \sum\limits_{J}b_{J}dx_{J} \right) \\ &= d\left( \sum\limits_{I,J}a_{I}b_{J} dx_{I} \wedge dx_{J} \right) \\ &= \sum\limits_{I,J} d\left( a_{I}b_{J} \right) \wedge dx_{I} \wedge dx_{J} \\ &= \sum\limits_{I,J} \left( b_{J}da_{I} + a_{I}db_{J} \right) \wedge dx_{I} \wedge dx_{J} \\ &= \sum\limits_{I,J} b_{J}da_{I} \wedge dx_{I} \wedge dx_{J} + \sum\limits_{I,J} a_{I}db_{J}\wedge dx_{I} \wedge dx_{J} \\ &= \left( \sum\limits_{I} da_{I} \wedge dx_{I} \right) \wedge \sum\limits_{J}b_{J} dx_{J} + (-1)^{k}\sum\limits_{I,J} a_{I}dx_{I}\wedge db_{J} \wedge dx_{J} \\ &= d\omega \wedge \varphi + (-1)^{k} \left( \sum\limits_{I}a_{I}dx_{I} \right)\wedge \left( \sum\limits_{J} db_{J}\wedge dx_{J} \right) \\ &= d\omega \wedge \varphi + (-1)^{k} \omega \wedge d\varphi \\ \end{align*}

(c)

  • ケース1. k=0k=0

ω\omega00-形式とする。

ω=f:MR \omega = f : M \to \mathbb{R}

それでは、

d(dω)=d(df)=d(i=1nfxidxi)=id(fxi)dxi=i(jxjfxidxj)dxi=i,j(2fxjxidxj)dxi={0i=j0ij=0 \begin{align*} d(d\omega) = d(df) &= d\left( \sum\limits_{i=1}^{n} \dfrac{\partial f}{\partial x_{i}}dx_{i} \right) \\ &= \sum_{i} d\left( \dfrac{\partial f}{\partial x_{i}} \right) \wedge dx_{i} \\ &= \sum_{i} \left( \sum_{j} \dfrac{\partial }{\partial x_{j}} \dfrac{\partial f}{\partial x_{i}} dx_{j}\right) \wedge dx_{i} \\ &= \sum_{i, j} \left( \dfrac{\partial^{2} f}{\partial x_{j} \partial x_{i}} dx_{j}\right) \wedge dx_{i} \\ &= \begin{cases} 0 & i = j \\ 0 & i \ne j \end{cases} \\ &= 0 \end{align*}

i=ji=jの場合、dxidxi=0dx_{i} \wedge dx_{i} = 0であるため、00である。iji \ne jの場合には、

(2fxjxidxj)dxi+(2fxixjdxi)dxj \begin{align*} \left( \dfrac{\partial^{2} f}{\partial x_{j} \partial x_{i}} dx_{j}\right) \wedge dx_{i} + \left( \dfrac{\partial^{2} f}{\partial x_{i} \partial x_{j}} dx_{i}\right) \wedge dx_{j} \end{align*}


  1. Manfredo P. Do Carmo, Differential Forms and Applications, p8-9 ↩︎