ラドン変換と積分積分、畳み込み
要約1
$\mathcal{R}$をラドン変換と呼ぼう。
$$ \mathcal{R} f (s, \boldsymbol{\theta}) = \int\limits_{\mathbf{x} \cdot \boldsymbol{\theta} = s} f(\mathbf{x}) d \mathbf{x} $$
$\mathcal{R}_{\boldsymbol{\theta}}f(s) = \mathcal{R} f (s, \boldsymbol{\theta})$としよう。以下の公式が成り立つ。
ラドン変換と積分積
$$ \int\limits_{-\infty}^{\infty} \mathcal{R}_{\boldsymbol{\theta}}f(s)g(s) ds = \int \limits_{\mathbb{R}^{n}} f(\mathbf{x}) g(\mathbf{x} \cdot \boldsymbol{\theta}) d \mathbf{x} $$
系
$$ \int\limits_{-\infty}^{\infty} \mathcal{R}_{\boldsymbol{\theta}}f(t - s)g(s) ds = \int \limits_{\mathbb{R}^{n}} f(\mathbf{x}) g(-\mathbf{x} \cdot \boldsymbol{\theta} + t) d \mathbf{x} $$
ラドン変換とコンボリューション
$$ \mathcal{R}_{\boldsymbol{\theta}} (f \ast g) = \mathcal{R}_{\boldsymbol{\theta}}f \ast \mathcal{R}_{\boldsymbol{\theta}}g $$
証明
ラドン変換と積分積
$s \boldsymbol{\theta} + \mathbf{u} \equiv \mathbf{x}$と置換すると、
$$ \begin{align*} \int\limits_{-\infty}^{\infty} \mathcal{R}_{\boldsymbol{\theta}}f(s)g(s) ds =&\ \int\limits_{-\infty}^{\infty} \int\limits_{\boldsymbol{\theta}^{\perp}} f(s \boldsymbol{\theta} + \mathbf{u})g(s) d \mathbf{u} ds \\ =&\ \int \limits_{\mathbb{R}^{n}} f(\mathbf{x}) g(\mathbf{x} \cdot \boldsymbol{\theta}) d \mathbf{x} \end{align*} $$
■
系
$$ \begin{align*} \int\limits_{-\infty}^{\infty} \mathcal{R}_{\boldsymbol{\theta}}f(t-s)g(s) ds =&\ \int\limits_{-\infty}^{\infty} \mathcal{R}f(t-s, \boldsymbol{\theta})g(s) ds \\ =&\ \int\limits_{-\infty}^{\infty} \int\limits_{\boldsymbol{\theta}^{\perp}} f((t-s) \boldsymbol{\theta} + \mathbf{u})g(s) d \mathbf{u} ds \\ \end{align*} $$
$(t-s)\boldsymbol{\theta} + \mathbf{u} \equiv \mathbf{x}$と置換した場合、$s = -\mathbf{x} \cdot \boldsymbol{\theta} + t$である、
$$ \int\limits_{-\infty}^{\infty} \int\limits_{\boldsymbol{\theta}^{\perp}} f((t-s) \boldsymbol{\theta} + \mathbf{u})g(s) d \mathbf{u} ds = \int \limits_{\mathbb{R}^{n}} f(\mathbf{x}) g(-\mathbf{x} \cdot \boldsymbol{\theta} + t) d \mathbf{x} $$
■
ラドン変換とコンボリューション
ラドン変換の並行不変性 $\mathcal{R}T_{\mathbf{a}}f (s, \boldsymbol{\theta}) = T_{\mathbf{a} \cdot \boldsymbol{\theta}}\mathcal{R}f(s,\boldsymbol{\theta})$により、
$$ \begin{align*} \mathcal{R}_{\boldsymbol{\theta}} (f \ast g) (s) =&\ \mathcal{R} (f \ast g) (s, \boldsymbol{\theta}) \\ =&\ \int \limits_{\boldsymbol{\theta}^{\perp}} f \ast g (s \boldsymbol{\theta} + \mathbf{u} ) d \mathbf{u} \\ =&\ \int \limits_{\boldsymbol{\theta}^{\perp}} \int \limits_{\mathbb{R}^{n}} f (s \boldsymbol{\theta} + \mathbf{u} - \mathbf{y} ) g(\mathbf{y}) d \mathbf{y} d \mathbf{u} \\ =&\ \int \limits_{\boldsymbol{\theta}^{\perp}} \int \limits_{\mathbb{R}^{n}} f (\mathbf{x}) g(s \boldsymbol{\theta} + \mathbf{u} - \mathbf{x}) d \mathbf{x} d \mathbf{u} \\ =&\ \int \limits_{\mathbb{R}^{n}} f (\mathbf{x})\int \limits_{\boldsymbol{\theta}^{\perp}} g(s \boldsymbol{\theta} + \mathbf{u} - \mathbf{x}) d \mathbf{u} d \mathbf{x} \\ =&\ \int \limits_{\mathbb{R}^{n}} f (\mathbf{x}) \int \limits_{\boldsymbol{\theta}^{\perp}} T_{\mathbf{x}} g(s \boldsymbol{\theta} + \mathbf{u}) d \mathbf{u} d \mathbf{x} \\ =&\ \int \limits_{\mathbb{R}^{n}} f (\mathbf{x}) \mathcal{R} T_{\mathbf{x}} g(s, \boldsymbol{\theta}) d \mathbf{x} \\ =&\ \int \limits_{\mathbb{R}^{n}} f (\mathbf{x}) T_{\mathbf{x} \cdot \boldsymbol{\theta}} \mathcal{R} g(s, \boldsymbol{\theta}) d \mathbf{x} \\ =&\ \int \limits_{\mathbb{R}^{n}} f (\mathbf{x}) \mathcal{R} g(s - \mathbf{x} \cdot \boldsymbol{\theta}, \boldsymbol{\theta}) d \mathbf{x} \\ =&\ \int \limits_{\mathbb{R}^{n}} f (\mathbf{x}) \mathcal{R}_{\boldsymbol{\theta}} g(s - \mathbf{x} \cdot \boldsymbol{\theta}) d \mathbf{x} \\ \end{align*} $$
上記の系によると、
$$ \begin{align*} \int \limits_{\mathbb{R}^{n}} f (\mathbf{x}) \mathcal{R}_{\boldsymbol{\theta}} g(s - \mathbf{x} \cdot \boldsymbol{\theta}) d \mathbf{x} =&\ \int\limits_{-\infty}^{\infty} \mathcal{R}_{\boldsymbol{\theta}} f(s-t) \mathcal{R}_{\boldsymbol{\theta}} g(t) dt \\ =&\ (\mathcal{R}_{\boldsymbol{\theta}}f \ast \mathcal{R}_{\boldsymbol{\theta}}g )(s) \end{align*} $$
■
Boris Rubin, Introduction to Radon Transforms With Elements of Fractional Calculus and Harmonic Analysis (2015), p129, 134 ↩︎