logo

合成関数のヤコビアン 📂多変数ベクトル解析

合成関数のヤコビアン

概要

関数f:RnRmf : \mathbb{R}^{n} \to \mathbb{R}^{m}g:RmRkg : \mathbb{R}^{m} \to \mathbb{R}^{k}が与えられたとする。ffヤコビアンJ(f)J(f)と表記しよう。すると、以下が成り立つ。

J(gf)=J(g)J(f) J(g \circ f) = J(g) J(f)

説明

ヤコビアンは最も一般化された導関数であるため、上記の定理は連鎖律の一般化である。

証明

ヤコビアンの定義により、

J(gf)=[(gf)1x1(gf)1xn(gf)kx1(gf)kxn]=[g1x1g1xngkx1gkxn] J(g \circ f) = \begin{bmatrix} \dfrac{\partial (g \circ f)_{1}}{\partial x_{1}} & \cdots & \dfrac{\partial (g \circ f)_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \dfrac{\partial (g \circ f)_{k}}{\partial x_{1}} & \cdots & \dfrac{\partial (g \circ f)_{k}}{\partial x_{n}} \end{bmatrix} = \begin{bmatrix} \dfrac{\partial g_{1}}{\partial x_{1}} & \cdots & \dfrac{\partial g_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \dfrac{\partial g_{k}}{\partial x_{1}} & \cdots & \dfrac{\partial g_{k}}{\partial x_{n}} \end{bmatrix}

この時gi=gi(f1(x),,fm(x)))g_{i} = g_{i}(f_{1}(\mathbf{x}), \dots, f_{m}(\mathbf{x})))であるため、

gixj==1mgiffxj \dfrac{\partial g_{i}}{\partial x_{j}} = \sum \limits_{\ell=1}^{m} \dfrac{\partial g_{i}}{\partial f_{\ell}} \dfrac{\partial f_{\ell}}{\partial x_{j}}

したがって、

J(gf)= [=1mg1ffx1=1mg1ffxn=1mgkffx1=1mgkffxm]= [g1f1g1fmgkf1gkfm][f1x1f1xnfmx1fmxn]= J(g)J(f) \begin{align*} J(g \circ f) =&\ \begin{bmatrix} \sum \limits_{\ell=1}^{m} \dfrac{\partial g_{1}}{\partial f_{\ell}} \dfrac{\partial f_{\ell}}{\partial x_{1}} & \cdots & \sum \limits_{\ell=1}^{m} \dfrac{\partial g_{1}}{\partial f_{\ell}} \dfrac{\partial f_{\ell}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \sum \limits_{\ell=1}^{m} \dfrac{\partial g_{k}}{\partial f_{\ell}} \dfrac{\partial f_{\ell}}{\partial x_{1}} & \cdots & \sum \limits_{\ell=1}^{m} \dfrac{\partial g_{k}}{\partial f_{\ell}} \dfrac{\partial f_{\ell}}{\partial x_{m}} \end{bmatrix} \\ =&\ \begin{bmatrix} \dfrac{\partial g_{1}}{\partial f_{1}} & \cdots & \dfrac{\partial g_{1}}{\partial f_{m}} \\ \vdots & \ddots & \vdots \\ \dfrac{\partial g_{k}}{\partial f_{1}}& \cdots & \dfrac{\partial g_{k}}{\partial f_{m}} \end{bmatrix} \begin{bmatrix} \dfrac{\partial f_{1}}{\partial x_{1}} & \cdots & \dfrac{\partial f_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \dfrac{\partial f_{m}}{\partial x_{1}} & \cdots & \dfrac{\partial f_{m}}{\partial x_{n}} \end{bmatrix} \\ =&\ J(g) J(f) \end{align*}