気体分子の速度と速さの期待値
数式1
気体分子の速度を$\mathbf{v} = (v_{x}, v_{y}, v_{z})$、速さを$v = | \mathbf{v} |$とする。気体分子の速度と速さに関する期待値は次のとおりだ。
$$ \begin{align*} \left\langle v_{x} \right\rangle &= 0 \\ \left\langle |v_{x}| \right\rangle &= \sqrt{\dfrac{2 k_{B} T}{\pi m}} \\ \left\langle v_{x} ^{2} \right\rangle &= \dfrac{k_{B} T}{\pi m} \\ \left\langle v \right\rangle &= \sqrt{\dfrac{8 k_{B} T}{\pi m}} \\ \left\langle v^{2} \right\rangle &= \dfrac{3 k_{B} T}{\pi m} \end{align*} $$
解説
証明では、以下の一般化されたガウス積分公式が使われる。
$$ \begin{equation} \int_{-\infty}^{\infty} xe^{-\alpha x^{2}}dx = 0 \end{equation} $$
$$ \begin{equation} \int_{0}^{\infty} x e^{-\alpha x^{2}}dx = \dfrac{1}{2 \alpha} \end{equation} $$
$$ \begin{equation} \int_{-\infty}^{\infty} x^{2} e^{-\alpha x^{2}}dx = \dfrac{1}{2}\sqrt{\dfrac{\pi}{\alpha^{3}}} \end{equation} $$
$$ \begin{equation} \int_{0}^{\infty} x^{3} e^{-\alpha x^{2}}dx = \dfrac{1}{2 \alpha^{2}} \end{equation} $$
証明
変数が$x$、$x$の確率密度関数が$f(x)$のとき、$x$の期待値は次のようになる。
$$ \left\langle x \right\rangle = \int x f(x) dx $$
期待値の定義から直接計算する。
速度の確率密度関数は次のとおりだ。
$$ g(v_{x}) = \sqrt{ {m} \over {2 \pi k_{B} T } } e^{ - m v_{x}^2 / 2 k_{B} T} $$
期待値の定義とガウス積分公式$(1)-(4)$から、簡単に計算できる。
$$ \left\langle v_{x} \right\rangle = \int v_{x} g(v_{x})dy_{x} = \sqrt{ \dfrac{m}{2 \pi k_{B} T}} \int_{-\infty}^{\infty} v_{x} e^{ - m v_{x}^2 / 2 k_{B} T}dv_{x} = 0 $$
$$ \begin{align*} \left\langle \left| v_{x} \right| \right\rangle =&\ \int_{-\infty}^{\infty} \left| v_{x} \right| g(v_{x})dy_{x} \\ =&\ \sqrt{ \dfrac{m}{2 \pi k_{B} T}} \int_{-\infty}^{\infty} \left| v_{x} \right| e^{ - m v_{x}^2 / 2 k_{B} T}dv_{x} \\ =&\ 2\sqrt{ \dfrac{m}{2 \pi k_{B} T}}\int_{0}^{\infty} v_{x} e^{ - m v_{x}^2 / 2 k_{B} T}dv_{x} \\ =&\ \sqrt{ \dfrac{m}{2 \pi k_{B} T}} \dfrac{2 k_{B} T}{m} \\ =&\ \sqrt{\dfrac{2 k_{B} T}{\pi m}} \end{align*} $$
$$ \begin{align*} \left\langle v_{x}^{2} \right\rangle =&\ \int_{-\infty}^{\infty} v_{x}^{2} g(v_{x})dy_{x} \\ =&\ \sqrt{ \dfrac{m}{2 \pi k_{B} T}} \int_{-\infty}^{\infty} v_{x}^{2} e^{ - m v_{x}^2 / 2 k_{B} T}dv_{x} \\ =&\ \sqrt{ \dfrac{m}{2 \pi k_{B} T}} \dfrac{\sqrt{\pi}}{2} \left( \sqrt{\dfrac{2 k_{B} T}{m}} \right)^{3} \\ =&\ \dfrac{k_{B} T}{m} \end{align*} $$
速さの確率密度関数はマクスウェル分布に従う。
$$ f(v) = \dfrac{4}{\sqrt{\pi}} \left( \dfrac{m}{2 k_{B} T} \right)^{3/2} v^{2} e^{-m v^{2} /2 k_{B} T} $$
したがって、期待値は次のように計算される。
$$ \begin{align*} \left\langle v \right\rangle =&\ \int_{0}^{\infty} v f(v) dv \\ =&\ \int_{0}^{\infty} \dfrac{4}{\sqrt{\pi}} \left( \dfrac{m}{2 k_{B} T} \right)^{3/2} v^{3} e^{-m v^{2} /2 k_{B} T} dv \\ =&\ \dfrac{4}{\sqrt{\pi}} \left( \dfrac{m}{2 k_{B} T} \right)^{3/2} \int_{0}^{\infty} v^{3} e^{-m v^{2} /2 k_{B} T} dv \\ =&\ \dfrac{4}{\sqrt{\pi}} \left( \dfrac{m}{2 k_{B} T} \right)^{3/2} \dfrac{1}{2} \left( \dfrac{2 k_{B} T}{m} \right)^{2} \\ =&\ \dfrac{4}{\sqrt{\pi}} \sqrt{\dfrac{m}{2 k_{B} T} } \left( \dfrac{m}{2 k_{B} T} \right) \dfrac{1}{2} \left( \dfrac{2 k_{B} T}{m} \right)^{2} \\ =&\ \sqrt{\dfrac{1}{\pi} \dfrac{2^{8}}{2^{5}} \dfrac{m^{3}}{m^{4}} \dfrac{k_{B}^{4}}{k_{B}^{3}} \dfrac{T^{4}}{T^{3}} } \\ =&\ \sqrt{\dfrac{2^{3} k_{B} T}{\pi m }} \\ =&\ \sqrt{\dfrac{8 k_{B} T}{\pi m }} \end{align*} $$
期待値は線形なので、速さの二乗の期待値は次のようになる。
$$ \left\langle v^{2} \right\rangle = \left\langle v_{x}^{2} \right\rangle + \left\langle v_{y}^{2} \right\rangle + \left\langle v_{z}^{2} \right\rangle = \dfrac{k_{B} T}{\pi m} + \dfrac{k_{B} T}{\pi m} + \dfrac{k_{B} T}{\pi m} = \dfrac{3k_{B} T}{\pi m} $$
■
Stephen J. Blundell and Katherine M. Blundell, 熱物理学(Concepts in Thermal Physics, イ・ジェウ訳) (第2版, 2014), p64-65 ↩︎