logo

直交基底に関する座標 📂線形代数

直交基底に関する座標

定義1

内積空間の基底$V$が直交集合である場合、$S$を直交基底orthogonal basisと言う。$S$が正規直交集合である場合、正規直交基底orthonormal basisと言う。

定理

$S = \left\{ \mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{n} \right\}$が内積空間$V$の直交基底であり、$\mathbf{u} \in V$とする。すると、次の式が成り立つ。

$$ \begin{equation} \begin{aligned} \mathbf{u} &= \dfrac{\langle \mathbf{u}, \mathbf{v}_{1} \rangle}{\| \mathbf{v}_{1} \|^{2}} \mathbf{v}_{1} + \dfrac{\langle \mathbf{u}, \mathbf{v}_{2} \rangle}{\| \mathbf{v}_{2} \|^{2}} \mathbf{v}_{2} + \cdots + \dfrac{\langle \mathbf{u}, \mathbf{v}_{n} \rangle}{\| \mathbf{v}_{n} \|^{2}} \mathbf{v}_{n} \\ &= \sum \limits _{i=1}^{n} \dfrac{\langle \mathbf{u}, \mathbf{v}_{i} \rangle}{\| \mathbf{v}_{i} \|^{2}} \mathbf{v}_{i} \end{aligned} \label{thm1} \end{equation} $$

$S$が正規直交基底である場合、次の式が成り立つ。

$$ \begin{equation} \begin{aligned} \mathbf{u} &= \langle \mathbf{u}, \mathbf{v}_{1} \rangle\mathbf{v}_{1} + \langle \mathbf{u}, \mathbf{v}_{2} \rangle\mathbf{v}_{2} + \cdots + \langle \mathbf{u}, \mathbf{v}_{n} \rangle\mathbf{v}_{n} \\ &= \sum \limits _{i=1}^{n} \langle \mathbf{u}, \mathbf{v}_{i} \rangle \mathbf{v}_{i} \end{aligned} \label{thm2} \end{equation} $$

説明

上記の定理から、次のベクトルを$\mathbf{u} \in V$の基底$S$に対する座標という。

$$ (\mathbf{u})_{S} = \left( \langle \mathbf{u}, \mathbf{v}_{1} \rangle, \langle \mathbf{u}, \mathbf{v}_{2} \rangle, \dots, \langle \mathbf{u}, \mathbf{v}_{n} \rangle \right) $$

証明

$S$が$V$の基底であるので、$\mathbf{u} \in V$は次のような唯一の線形組み合わせ表現が存在する

$$ \begin{equation} \mathbf{u} = c_{1} \mathbf{v}_{1} + c_{2} \mathbf{v}_{2} + \cdots + c_{n} \mathbf{v}_{n} \label{eq1} \end{equation} $$

$\mathbf{u}$と各$\mathbf{v}_{i}$の内積を取ると次のようになる。

$$ \begin{align*} \\ \langle \mathbf{u}, \mathbf{v}_{i} \rangle &= \langle c_{1} \mathbf{v}_{1} + c_{2} \mathbf{v}_{2} + \cdots + c_{n} \mathbf{v}_{n} , \mathbf{v}_{i} \rangle \\ &= c_{1} \langle \mathbf{v}_{1}, \mathbf{v}_{i} \rangle + c_{2} \langle \mathbf{v}_{2}, \mathbf{v}_{i} \rangle + \cdots c_{i} \langle \mathbf{v}_{i}, \mathbf{v}_{i} \rangle +\cdots + c_{n} \langle \mathbf{v}_{n}, \mathbf{v}_{i} \rangle \\ &= c_{i} \langle \mathbf{v}_{i}, \mathbf{v}_{i} \rangle \\ &= c_{i} \| \mathbf{v}_{i} \|^{2} \end{align*} $$

$$ \\ \implies c_{i} = \dfrac{\langle \mathbf{u}, \mathbf{v}_{i} \rangle }{\| \mathbf{v}_{i} \|^{2}} $$

上記の式を満たす$c_{i}$は唯一なので、これを$\eqref{eq1}$に代入すると次のようになる。

$$ \begin{align*} \mathbf{u} &= \dfrac{\langle \mathbf{u}, \mathbf{v}_{1} \rangle}{\| \mathbf{v}_{1} \|^{2}} \mathbf{v}_{1} + \dfrac{\langle \mathbf{u}, \mathbf{v}_{2} \rangle}{\| \mathbf{v}_{2} \|^{2}} \mathbf{v}_{2} + \cdots + \dfrac{\langle \mathbf{u}, \mathbf{v}_{n} \rangle}{\| \mathbf{v}_{n} \|^{2}} \mathbf{v}_{n} \\ &= \sum \limits _{i=1}^{n} \dfrac{\langle \mathbf{u}, \mathbf{v}_{i} \rangle}{\| \mathbf{v}_{i} \|^{2}} \mathbf{v}_{i} \end{align*} $$

$S$が正規直交集合であれば$\| \mathbf{v}_{i} \|^{2}=1$が成り立つので、$\eqref{thm2}$が成り立つ。


  1. Howard Anton, Elementary Linear Algebra: Aplications Version (12th Edition, 2019), p364 ↩︎