logo

ランダムベクトルの二次形式で表された偏差平方和 📂数理統計学

ランダムベクトルの二次形式で表された偏差平方和

公式

ランダムベクトル X=(X1,,Xn)\mathbf{X} = \left( X_{1} , \cdots , X_{n} \right)単位行列 InRn×nI_{n} \in \mathbb{R}^{n \times n} およびすべての成分が 11 である一行列 JnRn×nJ_{n} \in \mathbb{R}^{n \times n} に対して、次が成り立つ。 XT(In1nJn)X=(n1)S2 \mathbf{X}^{T} \left( I_{n} - {\frac{ 1 }{ n }} J_{n} \right) \mathbf{X} = ( n - 1 ) S^{2} ここで S2S^{2}標本分散である。

導出

X=1nk=1nXkS2=1n1k=1n(XkX)2 \begin{align*} \overline{X} =& {\frac{ 1 }{ n }} \sum_{k=1}^{n} X_{k} \\ S^{2} =& {\frac{ 1 }{ n - 1 }} \sum_{k=1}^{n} \left( X_{k} - \overline{X} \right)^{2} \end{align*} 標本平均 X\overline{X}標本分散 を上記のように置く。定理で与えられた (InJn/n)\left( I_{n} - J_{n} / n \right) は対角成分がすべて 11/n1 - 1/n 、非対角成分がすべて 1/n-1/n対称行列であるため、ランダムベクトル二次形式となり、次のように表すことができる。 XT(aij)X=i=1naiiXi2+ijaijXiXj \mathbf{X}^{T} \left( a_{ij} \right) \mathbf{X} = \sum_{i=1}^{n} a_{ii} X_{i}^{2} + \sum_{i \ne j} a_{ij} X_{i} X_{j} 上式で aii=11/na_{ii} = 1 - 1/naij=1/na_{ij} = -1/n を代入すると次が得られる。 XT(aij)X=i=1n(11n)Xi2+ij(1n)XiXj=i=1nXi21ni=1nXi21ni,jXiXj=i=1nXi21ni=1nXi21ni,jXiXj=i=1nXi21ni=1nXii=1nXi=i=1nXi2nX2=(n1)S2 \begin{align*} & \mathbf{X}^{T} \left( a_{ij} \right) \mathbf{X} \\ =& \sum_{i=1}^{n} \left( 1 - {\frac{ 1 }{ n }} \right) X_{i}^{2} + \sum_{i \ne j} \left( - {\frac{ 1 }{ n }} \right) X_{i} X_{j} \\ =& \sum_{i=1}^{n} X_{i}^{2} - {\frac{ 1 }{ n }} \sum_{i=1}^{n} X_{i}^{2} - {\frac{ 1 }{ n }} \sum_{i, j} X_{i} X_{j} \\ =& \sum_{i=1}^{n} X_{i}^{2} - {\frac{ 1 }{ n }} \sum_{i=1}^{n} X_{i}^{2} - {\frac{ 1 }{ n }} \sum_{i, j} X_{i} X_{j} \\ =& \sum_{i=1}^{n} X_{i}^{2} - {\frac{ 1 }{ n }} \sum_{i=1}^{n} X_{i} \sum_{i=1}^{n} X_{i} \\ =& \sum_{i=1}^{n} X_{i}^{2} - n \overline{X}^{2} \\ =& ( n - 1 ) S^{2} \end{align*}