logo

独立な正規分布およびカイ二乗分布からのスチューデントのt分布の導出 📂確率分布論

独立な正規分布およびカイ二乗分布からのスチューデントのt分布の導出

定理

二つの確率変数 W,VW,V独立で、WN(0,1)W \sim N(0,1)Vχ2(r)V \sim \chi^{2} (r) である場合、 T=WV/rt(r) T = { {W} \over {\sqrt{V/r} } } \sim t(r)


  • N(μ,σ2)N \left( \mu , \sigma^{2} \right) は平均が μ\mu で、分散が σ2\sigma^{2}正規分布だ。
  • χ2(r)\chi^{2} \left( r \right) は自由度 rrカイ二乗分布だ。
  • t(r)t(r) は自由度 rrt-分布だ。

説明

この定理を統計学だけで接近するなら、実用性や歴史的に見てむしろt-分布の定義に近い。

導出1

戦略:ジョイント確率密度関数で直接演繹する。

正規分布の定義:μR\mu \in \mathbb{R}σ>0\sigma > 0 に対して、以下の確率密度関数を持つ連続確率分布 N(μ,σ2)N \left( \mu,\sigma^{2} \right) を正規分布という。 f(x)=12πσexp[12(xμσ)2],xR f(x) = {{ 1 } \over { \sqrt{2 \pi} \sigma }} \exp \left[ - {{ 1 } \over { 2 }} \left( {{ x - \mu } \over { \sigma }} \right)^{2} \right] \qquad, x \in \mathbb{R}

カイ二乗分布の定義:自由度 r>0r > 0 に対して、以下の確率密度関数を持つ連続確率分布 χ2(r)\chi^{2} (r) をカイ二乗分布という。 f(x)=1Γ(r/2)2r/2xr/21ex/2,x(0,) f(x) = {{ 1 } \over { \Gamma (r/2) 2^{r/2} }} x^{r/2-1} e^{-x/2} \qquad , x \in (0, \infty)


W,VW,V の確率密度関数 f1,f2f_{1} , f_{2} が以下のように与えられるため、 f1(w):=12πew2/2f2(v)=1Γ(r2)2r2vr21ev2 f_1 (w) := { {1} \over {\sqrt{2 \pi }} } e ^{- w^{2} / 2} \\ \displaystyle f_2 (v) ={ 1 \over { \Gamma ({r \over 2}) 2^{r \over 2} } } v^{ {r \over 2} - 1 } e^{-{{v} \over 2}} WWVV の[ジョイント]確率密度関数(../1449) hhwRw \in \mathbb{R}v(0,)v \in (0,\infty) に対して以下の通りである。 h(w,v)=12πew2/21Γ(r2)2r2vr21ev2 h(w,v) = { {1} \over {\sqrt{2 \pi }} } e ^{- w^{2} / 2} { 1 \over { \Gamma ({r \over 2}) 2^{r \over 2} } } v^{ {r \over 2} - 1 } e^{-{{v} \over 2}} 今、T:=WV/r\displaystyle T := { {W} \over {\sqrt{V/r} } } そして U:=VU := V とすると、w=tu/rw = t\sqrt{u} / \sqrt{r} そして v=uv = u であるため、 J=ur0t2ur1=ur \left| J \right| = \begin{vmatrix} {{\sqrt{u}} \over {\sqrt{r}}} & 0 \\ {{t} \over {2 \sqrt{ur}}} & 1 \end{vmatrix} = \sqrt{{{ u } \over { r }}} 従って、T,UT, U のジョイント確率密度関数は g(t,u)=h(wv/r,u)J=12πΓ(r/2)2r/2ur/21exp{u2(1+t2r)}ur \begin{align*} g(t,u) =& h({ {w} \over {\sqrt{v/r} } },u) |J| \\ =& { {1} \over {\sqrt{2 \pi } \Gamma (r/2) 2^{r/2} } } u^{r/2 -1} \exp \left\{ -{{u} \over {2} } \left( 1 + { {t^2} \over {r} } \right) \right\} { {\sqrt{u} } \over {\sqrt{r} } } \end{align*} TT のマージナル確率密度関数は g(t)=g(t,u)du=012πrΓ(r/2)2r/2u(r+1)/21exp{u2(1+t2r)}du \begin{align*} g(t) =& \int_{-\infty}^{\infty} g(t,u) du \\ =& \int_{0}^{\infty} { {1} \over {\sqrt{2 \pi r} \Gamma (r/2) 2^{r/2} } } u^{(r+1)/2 -1} \exp \left\{ -{{u} \over {2} } \left( 1 + { {t^2} \over {r} } \right) \right\} du \end{align*} z:=u2(1+t2r)\displaystyle z := {{u} \over {2}} \left( 1 + {{t^2} \over {r}} \right) に置換えると、 g(t)=012πrΓ(r/2)2r/2(2z1+t2/r)(r+1)/21ez(21+t2/r)dz=1πrΓ(r/2)0122r/2z(r+1)/21(21+t2/r)(r+1)/21ez(21+t2/r)dz=1πrΓ(r/2)012(r+1)/2z(r+1)/21(21+t2/r)(r+1)/2ezdz=1πrΓ(r/2)0z(r+1)/21(11+t2/r)(r+1)/2ezΓ((r+1)/2)Γ((r+1)/2)dz=Γ((r+1)/2)πrΓ(r/2)(11+t2/r)(r+1)/201Γ((r+1)/2)z(r+1)/21ezdz=Γ((r+1)/2)πrΓ(r/2)(11+t2/r)(r+1)/21 \begin{align*} g(t) =& \int_{0}^{\infty} { {1} \over {\sqrt{2 \pi r} \Gamma (r/2) 2^{r/2} } } \left( { {2z} \over {1 + t^2 / r} }\right)^{(r+1)/2-1} e^{-z} \left( { {2} \over {1+ t^2 / r} } \right) dz \\ =& { {1} \over {\sqrt{\pi r} \Gamma (r/2) } } \int_{0}^{\infty} {{ 1 } \over { \sqrt{2} 2^{r/2} }}z^{(r+1)/2-1} \left( { {2} \over {1 + t^2 / r} }\right)^{(r+1)/2-1} e^{-z} \left( { {2} \over {1+ t^2 / r} } \right) dz \\ =& { {1} \over {\sqrt{\pi r} \Gamma (r/2) } } \int_{0}^{\infty} {{ 1 } \over { 2^{(r+1)/2} }}z^{(r+1)/2-1} \left( { {2} \over {1 + t^2 / r} }\right)^{(r+1)/2} e^{-z} dz \\ =& { {1} \over {\sqrt{\pi r} \Gamma (r/2) } } \int_{0}^{\infty}z^{(r+1)/2-1} \left( { {1} \over {1 + t^2 / r} }\right)^{(r+1)/2} e^{-z} {{ \Gamma \left( (r+1)/2 \right) } \over { \Gamma \left( (r+1)/2 \right) }} dz \\ =& { {\Gamma \left( (r+1)/2 \right)} \over {\sqrt{\pi r} \Gamma (r/2) } } \left( { {1} \over {1 + t^2 / r} }\right)^{(r+1)/2} \int_{0}^{\infty} {{ 1 } \over { \Gamma \left( (r+1)/2 \right) }} z^{(r+1)/2-1} e^{-z} dz \\ =& { {\Gamma \left( (r+1)/2 \right)} \over {\sqrt{\pi r} \Gamma (r/2) } } \left( { {1} \over {1 + t^2 / r} }\right)^{(r+1)/2} \cdot 1 \end{align*} 積分関数がガンマ分布 Γ(r+12,1)\Gamma \left( {{ r + 1 } \over { 2 }} , 1 \right) の確率密度関数となり、複雑な計算を回避できる。整理すると、 g(t)=Γ((r+1)/2)πrΓ(r/2)1(1+t2/r)(r+1)/2 g(t) = {{\Gamma ( (r+1)/2 ) } \over { \sqrt{\pi r} \Gamma (r/2) }} { {1} \over {(1 + t^{2} / r)^{(r+1)/2} } } これは自由度rr のt-分布の確率密度関数であるため、 T=WV/rt(r) T = { {W} \over {\sqrt{V/r} } } \sim t(r)


  1. Hogg et al. (2013). Introduction to Mathematical Statistcs(7th Edition): 191-192. ↩︎