logo

逆双曲線関数 📂関数

逆双曲線関数

定義1

双曲線関数の逆関数を逆双曲線関数と言います。

y=sinh1x    sinhy=xy=cosh1x    coshy=xy=tanh1x    tanhy=x \begin{align*} y = \sinh^{-1} x &\iff \sinh y = x \\ y = \cosh^{-1} x &\iff \cosh y = x \\ y = \tanh^{-1} x &\iff \tanh y = x \\ \end{align*}

クローズド形式

逆双曲線関数の関数値は具体的には以下の通りです。

sinh1x=ln(x+x2+1)xRcosh1x=ln(x+x21)x1tanh1x=12ln(1+x1x)1<x<1 \begin{align*} \sinh^{-1} x &= \ln \left( x + \sqrt{x^{2} + 1} \right) & x \in \mathbb{R} \\ \cosh^{-1} x &= \ln \left( x + \sqrt{x^{2} - 1} \right) & x \le 1 \\ \tanh^{-1} x &= \dfrac{1}{2} \ln \left( \dfrac{1 + x}{1 - x} \right) & -1 \lt x \lt 1 \\ \end{align*}

証明

sinh1x\sinh^{-1} x

方法1

y=sinh1xy = \sinh^{-1} xとする。するとsinhy=x\sinh y = xとなるため、

eyey2=x    eyey2x=0 \dfrac{e^{y} - e^{-y}}{2} = x \implies e^{y} - e^{-y} - 2x = 0

eye^{y}を乗じてeye^{y}についての二次方程式として整理しよう。

(ey)22x(ey)1=0 (e^{y})^{2} - 2x(e^{y}) - 1 = 0

解の公式で根を求めると、

ey=x±x2+1 e^{y} = x \pm \sqrt{x^{2} + 1}

この時xx2<x2+1x \le \sqrt{x^{2}} < \sqrt{x^{2} + 1}であり、ey>0e^{y} > 0であるため、可能な場合は、

ey=x+x2+1 e^{y} = x + \sqrt{x^{2} + 1}

両辺にログを取ると、

y=ln(x+x2+1) y = \ln (x + \sqrt{x^{2} + 1})

方法2

y=sinh1xy = \sinh^{-1} xとする。するとsinhy=x\sinh y = xであり、coshx+sinhx=ex\cosh x + \sinh x = e^{x}であるため、両辺にcoshy\cosh yを加えると、

ey=x+coshy e^{y} = x + \cosh y

また、恒等式 cosh2xsinh2x=1\cosh^{2}x - \sinh^{2}x = 1を利用すると次を得る。

ey=x+sinh2y+1=x+x2+1 e^{y} = x + \sqrt{\sinh^{2} y + 1} = x + \sqrt{x^{2} + 1}

両辺にログを取ると、

y=ln(x+x2+1) y = \ln (x + \sqrt{x^{2} + 1})


cosh1x\cosh^{-1} x

sinh1x\sinh^{-1} xを求めるのと同じ方法で、簡単に書くと以下の通りです。

y=cosh1x    coshy=x    coshy+sinhy=x+sinhy    ey=x+cosh2y1    ey=x+x21    y=ln(x+x21) \begin{align*} && y &= \cosh^{-1} x \\ \implies && \cosh y &= x \\ \implies && \cosh y + \sinh y &= x + \sinh y \\ \implies && e^{y} &= x + \sqrt{\cosh^{2}y - 1} \\ \implies && e^{y} &= x + \sqrt{x^{2} - 1} \\ \implies && y &= \ln (x + \sqrt{x^{2} - 1}) \end{align*}


tanh1x\tanh^{-1} x

説明なしに手順だけ簡単に書くと以下の通りです。

y=tanh1x    tanhy=x    eyeyey+ey=x    e2y1e2y+1=x    e2y1=x(e2y+1)    e2yxe2y=x+1    (1x)e2y=x+1    e2y=1+x1x    y=12ln(1+x1x) \begin{align*} && y &= \tanh^{-1} x \\ \implies && \tanh y &= x \\ \implies && \dfrac{e^{y} - e^{-y}}{e^{y} + e^{-y}} &= x \\ \implies && \dfrac{e^{2y} - 1}{e^{2y} + 1} &= x \\ \implies && e^{2y} - 1 &= x (e^{2y} + 1) \\ \implies && e^{2y} - xe^{2y} &= x + 1 \\ \implies && (1 - x)e^{2y} &= x + 1 \\ \implies && e^{2y} &= \dfrac{1 + x}{1 - x} \\ \implies && y &= \dfrac{1}{2} \ln \left( \dfrac{1 + x}{1 - x} \right) \\ \end{align*}

定義域と値域

sinh1:RRcosh1:[1,)[0,)tanh1:(1,1)R \begin{align*} \sinh^{-1} &: \mathbb{R} \to \mathbb{R} \\ \cosh^{-1} &: [1, \infty) \to [0, \infty) \\ \tanh^{-1} &: (-1, 1) \to \mathbb{R} \end{align*}

導関数

ddx(sinh1x)=1x2+1ddx(csch1x)=1xx2+1ddx(cosh1x)=1x21ddx(sech1x)=1x1x2ddx(tanh1x)=11x2ddx(coth1x)=11x2 \begin{align*} \dfrac{d}{dx} (\sinh^{-1} x) &= \dfrac{1}{\sqrt{x^{2} + 1}} \qquad & \dfrac{d}{dx} (\csch^{-1} x) &= - \dfrac{1}{|x|\sqrt{x^{2} + 1}} \\ \dfrac{d}{dx} (\cosh^{-1} x) &= \dfrac{1}{\sqrt{x^{2} - 1}} \qquad & \dfrac{d}{dx} (\sech^{-1} x) &= - \dfrac{1}{x\sqrt{1 - x^{2}}} \\ \dfrac{d}{dx} (\tanh^{-1} x) &= \dfrac{1}{1 - x^{2}} \qquad & \dfrac{d}{dx} (\coth^{-1} x) &= \dfrac{1}{1 - x^{2}} \end{align*}


  1. James Stewart, Daniel Clegg, and Saleem Watson, Calculus (early transcendentals, 9E), p261-266 ↩︎