logo

リーマン ゼータ関数 📂関数

リーマン ゼータ関数

定義

次のように定義された関数 ξ\xiリーマンのシー関数riemann xi functionと呼ぶ。 ξ(s):=12s(s1)πs/2ζ(s)Γ(s2) \xi (s) := {{ 1 } \over { 2 }} s ( s-1) \pi^{-s/2} \zeta (s) \Gamma \left( {{ s } \over { 2 }} \right)


説明

リーマンのシー関数は元々異なる形で定義されていたが、エドムント・ランダウedmund Landauによって小文字のシー ξ\xi で再定義され、元々のリーマンのシー関数は大文字 Ξ\Xi を使って Ξ(z):=ξ(12+zi)\Xi (z) := \xi \left( {{ 1 } \over { 2 }} + zi \right) のように定義された1とされている。

定理

ξ(1s)=ξ(s) \xi ( 1 - s) = \xi (s) 一方、リーマンのシー関数は s=12\displaystyle s = {{ 1 } \over { 2 }} に対して対称で、これは元のリーマンのシー関数の定義によると、次のように対称性をよりよく表現できた。 Ξ(z)=Ξ(z) \Xi ( -z ) = \Xi ( z )

証明2

パート 1.

Γ(x)=0tx1etdt \Gamma (x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt ガンマ関数の定義から t=n2πzt = n^{2} \pi z とすると Γ(x)=0(n2πz)x1en2πzn2πdz=n2π(n2π)x10zx1en2πzdz \begin{align*} \displaystyle \Gamma \left( x \right) =& \int_{0}^{\infty} \left( n^{2} \pi z \right)^{x-1} e^{-n^{2} \pi z} n^{2} \pi dz \\ =& n^{2} \pi \left( n^{2} \pi \right)^{x-1} \int_{0}^{\infty} z^{x-1} e^{-n^{2} \pi z} dz \end{align*} ここで x:=s2\displaystyle x := {{ s } \over { 2 }} と置くと nsπs/2Γ(s2)=0zs21en2πzdz n^{-s} \pi^{-s/2} \Gamma \left( {{ s } \over { 2 }} \right) = \int_{0}^{\infty} z^{{{ s } \over { 2 }}-1} e^{-n^{2} \pi z} dz 両辺に nN\sum_{n \in \mathbb{N}} を取ると、リーマンのゼータ関数の定義から Re(s)>1\re(s) > 1 の場合 ζ(s)πs/2Γ(s2)=nNnsπs/2Γ(s2)=nN0zs21en2πzdz=0zs21nNen2πzdz \begin{align*} \zeta (s) \pi^{-s/2} \Gamma \left( {{ s } \over { 2 }} \right) =& \sum_{n \in \mathbb{N}} n^{-s} \pi^{-s/2} \Gamma \left( {{ s } \over { 2 }} \right) \\ =& \sum_{n \in \mathbb{N}} \int_{0}^{\infty} z^{{{ s } \over { 2 }}-1} e^{-n^{2} \pi z} dz \\ =& \int_{0}^{\infty} z^{{{ s } \over { 2 }}-1} \sum_{n \in \mathbb{N}} e^{-n^{2} \pi z} dz \end{align*}


パート 2.

ヤコビのセータ関数の定義と性質: ϑ(τ):=nZeπn2τ \vartheta (\tau) := \sum_{n \in \mathbb{Z}} e^{-\pi n^{2} \tau } このように定義された関数 ϑ\vartheta をヤコビのセータ関数と呼び、次のような性質を持つ。 ϑ(τ)=1τϑ(1τ) \vartheta ( \tau ) = \sqrt{ {{ 1 } \over { \tau }}} \vartheta \left( {{ 1 } \over { \tau }} \right)

積分区間を [0,1)[0,1)[1,)[1 , \infty) で分けて、[0,1)[0,1)τ:=1z\tau := {{ 1 } \over { z }} のように置換すると dz=1τ2dτdz = \left| {{ 1 } \over { \tau^{2} }} \right| d \tau だから πs/2ζ(s)Γ(s2)=0zs21ϑ(z)dz=01zs21ϑ(z)dz+1zs21ϑ(z)=1τ1s2ϑ(1τ)1τ2dτ+1zs21ϑ(z)dz=1τ1s2ϑ(1τ)dτ+1zs21ϑ(z)dz=1τ1s2τϑ(τ)dτ+1zs21ϑ(z)dz=1τs212ϑ(τ)dτ+1zs21ϑ(z)dz \begin{align*} \pi^{-s/2} \zeta (s) \Gamma \left( {{ s } \over { 2 }} \right) =& \int_{0}^{\infty} z^{{{ s } \over { 2 }}-1} \vartheta (z) dz \\ =& \int_{0}^{1} z^{{{ s } \over { 2 }}-1} \vartheta (z) dz + \int_{1}^{\infty} z^{{{ s } \over { 2 }}-1} \vartheta (z) \\ =& \int_{1}^{\infty} \tau^{ 1 - {{ s } \over { 2 }}} \vartheta \left( {{ 1 } \over { \tau }} \right) {{ 1 } \over { \tau^{2} }} d \tau + \int_{1}^{\infty} z^{{{ s } \over { 2 }}-1} \vartheta (z) dz \\ =& \int_{1}^{\infty} \tau^{ -1 - {{ s } \over { 2 }}} \vartheta \left( {{ 1 } \over { \tau }} \right) d \tau + \int_{1}^{\infty} z^{{{ s } \over { 2 }}-1} \vartheta (z) dz \\ =& \int_{1}^{\infty} \tau^{ -1 - {{ s } \over { 2 }}} \sqrt{\tau} \vartheta \left( \tau \right) d \tau + \int_{1}^{\infty} z^{{{ s } \over { 2 }}-1} \vartheta (z) dz \\ =& \int_{1}^{\infty} \tau^{ - {{ s } \over { 2 }} - {{ 1 } \over { 2 }}} \vartheta \left( \tau \right) d \tau + \int_{1}^{\infty} z^{{{ s } \over { 2 }}-1} \vartheta (z) dz \end{align*} 積分子を再び dzdz と統一して表示すると πs/2ζ(s)Γ(s2)=1[zs212+zs21]ϑ(z)dz \pi^{-s/2} \zeta (s) \Gamma \left( {{ s } \over { 2 }} \right) = \int_{1}^{\infty} \left[ z^{ - {{ s } \over { 2 }} - {{ 1 } \over { 2 }}} + z^{{{ s } \over { 2 }}-1} \right] \vartheta \left( z \right) dz


パート 3. 上の方程式で、変数が ss ではなく 1s1-s であっても π(1s)/2ζ(1s)Γ(1s2)=1[z1s212+z1s21]ϑ(z)dz=1[zs21+zs212]ϑ(z)dz=πs/2ζ(s)Γ(s2) \begin{align*} \pi^{-(1-s)/2} \zeta (1-s) \Gamma \left( {{ 1-s } \over { 2 }} \right) =& \int_{1}^{\infty} \left[ z^{ - {{ 1-s } \over { 2 }} - {{ 1 } \over { 2 }}} + z^{{{ 1-s } \over { 2 }}-1} \right] \vartheta \left( z \right) dz \\ =& \int_{1}^{\infty} \left[ z^{{{ s } \over { 2 }}-1} + z^{ - {{ s } \over { 2 }} - {{ 1 } \over { 2 }}} \right] \vartheta \left( z \right) dz \\ =& \pi^{-s/2} \zeta (s) \Gamma \left( {{ s } \over { 2 }} \right) \end{align*} 両辺に (1s)((1s)1)2=s(s1)2\displaystyle {{ (1-s) ((1-s)-1) } \over { 2 }} = {{ s (s-1) } \over { 2 }} を掛けると (1s)((1s)1)2π(1s)/2ζ(1s)Γ(1s2)=s(s1)2πs/2ζ(s)Γ(s2) {{ (1-s) ((1-s)-1) } \over { 2 }} \pi^{-(1-s)/2} \zeta (1-s) \Gamma \left( {{ 1-s } \over { 2 }} \right) = {{ s (s-1) } \over { 2 }} \pi^{-s/2} \zeta (s) \Gamma \left( {{ s } \over { 2 }} \right) これをリーマンのシー関数で表すと ξ(1s)=ξ(s) \xi ( 1 - s) = \xi (s)