logo

球面調和関数:球面座標ラプラス方程式の極角、方位角に対する一般解 📂偏微分方程式

球面調和関数:球面座標ラプラス方程式の極角、方位角に対する一般解

説明

ラプラス方程式を満たす関数を調和関数という。球面調和関数は球座標系でのラプラス方程式を満たす関数を言い、正確には径成分を除いた極角θ\thetaと方位角ϕ\phiに対する一般解を意味する。

Proof

The Laplace equation in the spherical coordinate system is as follows.

2f=1r2r(r2fr)+1r2sinθθ(sinθfθ)+1r2sin2θ2f2ϕ=0 \begin{equation} \nabla ^2 f = \frac{1}{r^2}\frac{\partial}{\partial r} \left( r^2\frac{\partial f}{\partial r} \right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left( \sin\theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 f}{\partial^2 \phi}=0 \label{eq1} \end{equation}

Assuming that ff is separable in variables,

f=R(r)Θ(θ)Φ(ϕ) f=R(r)\Theta (\theta)\Phi (\phi)

Substituting ff into the Laplace equation (1)(1) and multiplying both sides by r2RΘΦ\dfrac{r^{2} }{R\Theta \Phi} yields the following.

1Rddr(r2dRdr)+1Θsinθddθ(sinθdΘdθ)+1Φsin2θd2Φdϕ2=0 {\color{blue}\frac{1}{R}\frac{d}{d r} \left( r^2\frac{d R}{d r} \right)} + {\color{green}\frac{1}{\Theta\sin\theta}\frac{d}{d\theta}\left( \sin\theta \frac{d \Theta}{d \theta} \right) + \frac{1}{\Phi\sin^2\theta}\frac{d^2 \Phi}{d \phi^2}} =0

Now, the first term affects only rr, and the rest affects only θ\theta, ϕ\phi. Therefore, each part is constant because if rr changes, affecting the first term, the rest remains unchanged, invalidating the equation. That’s why each term highlighted in colors is constant.

Let’s consider the term regarding θ\theta, ϕ\phi as a constant l(l+1)-l(l+1). Initially, it is assumed that ll is any complex number, but eventually, it must be an integer.

1Θsinθddθ(sinθdΘdθ)+1Φsin2θd2Φdϕ2=l(l+1) \frac{1}{\Theta\sin\theta}\frac{d}{d\theta}\left( \sin\theta \frac{d \Theta}{d \theta} \right) + \frac{1}{\Phi\sin^2\theta}\frac{d^2 \Phi}{d \phi^{2}}=-l(l+1)

Multiplying both sides by sin2θ\sin ^{2} \theta and rearranging gives the following.

sinθΘddθ(sinθdΘdθ)+l(l+1)sin2θ=1Φd2Φdϕ2 \begin{equation} \frac{\sin \theta}{\Theta}\frac{d}{d\theta}\left( \sin\theta \frac{d \Theta}{d \theta} \right)+l(l+1)\sin^{2}\theta =- \frac{1}{\Phi}\frac{d^2 \Phi}{d \phi^{2}} \label{eq2} \end{equation}

Since the variables θ\theta, ϕ\phi are separated on both sides, as before, each side is constant. Let’s set the right side as m2m^{2}. Then, we obtain the following.

d2Φdϕ2=m2Φ \frac{d^2 \Phi}{d \phi^{2}}=-m^{2}\Phi

This is a simple second-order differential equation. In brief, a function that differentiates into itself is an exponential function. However, since the constant must become negative when squared, it must include ii in the exponent.

Φ(ϕ)=eimϕ \begin{equation} \Phi (\phi)=e^{im\phi} \label{eq3} \end{equation}

The reason why eimϕe^{-im\phi} is not considered is that solutions exist for both positive and negative values of the same magnitude for mm. For example, when there’s a solution for m=1,0,1m=-1, 0,1 , both eiϕe^{i\phi} and eiϕe^{-i\phi} can be obtained, so it’s sufficient to express the solution with (3)(3) only. Since ϕ\phi is the azimuthal angle, it must satisfy Φ(ϕ)=Φ(ϕ+2π)\Phi (\phi)=\Phi (\phi+2\pi). Therefore, we obtain the following.

eimϕ=eim(ϕ+2π)=eimϕei2mπ    ei2mπ=1 e^{im\phi}=e^{im(\phi+2\pi)}=e^{im\phi}e^{i2m\pi} \\ \implies e^{i2m\pi}=1

Using Euler’s formula, we obtain the following.

ei2mπ=cos(2mπ)+isin(2mπ)=1 e^{i2m\pi}=\cos(2m\pi)+i\sin(2m\pi)=1

For this equation to hold, mm must be an integer.

m=0,±1,±2, m=0,\pm1,\pm2,\cdots

This result is related to the fact in quantum mechanics that the magnetic quantum number exists only as an integer value between l-l and ll. Now, let’s solve the differential equation for θ\theta. From (2)(2), we obtain the following equation.

sinθddθ(sinθdΘdθ)+[l(l+1)sin2θm2]Θ=0 \sin \theta\frac{d}{d\theta}\left( \sin\theta \frac{d \Theta}{d \theta} \right)+[l(l+1)\sin^{2}\theta -m^2]\Theta=0

This is an associated Legendre differential equation, and its solution is as follows.

Θ(θ)=Plm(cosθ)=(1cos2θ)m2dmdxmPl(x)=(1cos2θ)m2dmdxm[12ll!dldxl(x21)l] \begin{align} \Theta (\theta) &= P_{l}^{m}(\cos \theta) \nonumber \\ &= (1-\cos ^{2}\theta)^{\frac{|m|}{2}} \frac{ d^{|m|} }{ dx^{|m|} } P_{l}(x) \nonumber \\ &=(1-\cos ^{2}\theta)^{\frac{|m|}{2}} \frac{ d^{|m|} }{ dx^{|m|} }\left[ \dfrac{1}{2^l l!} \dfrac{d^l}{dx^l}(x^2-1)^l \right] \label{eq4} \end{align}

Here, Pl(x)P_{l}(x) is a Legendre polynomial.

Pl(x)=12ll!dldxl(x21)l P_{l}(x)=\dfrac{1}{2^l l!} \dfrac{d^l}{dx^l}(x^2-1)^l

From the condition of the Legendre polynomial, ll is a non-negative integer.

l=0,1,2, l=0,1,2,\cdots

Where (eq4)\eqref{eq4}, the polynomial of order (x21)l(x^{2}-1)^{l}, is differentiated l+ml+|m| times, leading to m>l|m|>l, rendering it meaningless. Therefore, mm must satisfy the condition of lml-l\le m \le l.

m=l,l+1,,2,1,0,1,2,,l1,l m=-l,-l+1,\cdots,-2,-1,0,1,2,\cdots,l-1,l

Finally, the spherical harmonic function Ylm(θ,ϕ)Y_{l}^{m}(\theta,\phi) is as follows.

Ylm(θ,ϕ)=eimϕPlm(cosθ) Y_{l}^{m}(\theta,\phi)=e^{im\phi}P_{l}^{m}(\cos \theta)

Here, ll is l=0,1,2l=0,1,2\cdots and mm is an integer that satisfies lml -l\le m \le l.