支配収束定理の証明
概要
確率空間 $( \Omega , \mathcal{F} , P)$ が与えられたとしよう。
確率変数のシーケンス $\left\{ X_{n} \right\}_{n \in \mathbb{N}}$ が、全ての$n \in \mathbb{N}$とある$Y \in \mathcal{L}^{1} (\Omega)$に対して$| X_{n} | \le Y$とするならば $$ X_{n} \to X \text{ a.s.} \implies E( X_{n} | \mathcal{G} ) \to \mathcal{G} ) \text{ a.s.} $$
- $\text{a.s.}$はほぼ確実にを意味する。
説明
条件付き優越収束定理は、ただの優越収束定理(DCT)が条件付き期待値に対しても同様に適用されるということを教えてくれる。もちろん、確率論での役割もDCTと同じである。
証明
- [7]: $E(X+Y | \mathcal{G}) = E(X | \mathcal{G}) + E(Y| \mathcal{G}) \text{ a.s.}$
- [10]: $\left| E( X | \mathcal{G} ) \right| \le E ( | X | | \mathcal{G} ) \text{ a.s.}$
$$ \begin{align*} & \left| E( X_{n} | \mathcal{G} ) - E( X | \mathcal{G} ) \right| \\ \color{red}{=}& \left| E( X_{n} - X | \mathcal{G} ) \right| \\ \color{blue}{\le}& E( \left| X_{n} - X \right| | \mathcal{G} ) \\ \le & E \left( \sup_{k \ge n} \left| X_{k} - X \right| | \mathcal{G} \right) \end{align*} $$ であるため、条件付き単調収束定理とリミットスープリームの性質、条件$X_{n} \to X \text{ a.s.}$に従って、 $$ \begin{align*} & \lim_{n \to \infty} \left| E( X_{n} | \mathcal{G} ) - E( X | \mathcal{G} ) \right| \\ \le & \lim_{n \to \infty} E( \sup_{k \ge n} \left| X_{k} - X \right| | \mathcal{G} ) \\ \color{red}{=}& E \left( \lim_{n \to \infty} \sup_{k \ge n} \left| X_{k} - X \right| | \mathcal{G} \right) \\ =& E \left( \lim_{n \to \infty} \left| X_{n} - X \right| \mathcal{G} \right) \\ \color{blue}{=}& 0 \text{ a.s.} \end{align*} $$
■