logo

一次元のダランベールの公式 📂偏微分方程式

一次元のダランベールの公式

定理1

波動方程式のコーシー問題が次のように与えられたとしよう。

uttuxx=0in R2=Rx×Rtu=g,ut=\hon R×{t=0} \begin{align*} u_{tt}-u_{xx}&= 0 && \text{in } \mathbb{R}^2=\mathbb{R}_{x} \times \mathbb{R}_{t} \\ u=g,\quad u_{t}=&\h && \text{on } \mathbb{R}\times\left\{t=0\right\} \end{align*}

この時、gC2(R),hC1(R)g \in C^2(\mathbb{R}), h\in C^1(\mathbb{R})である。そして、u(x,t)u(x,t)を以下のように定義しよう。

u(x,t)=12[g(x+t)+g(xt)]+12xtx+th(y)dy (x,t)R2 \begin{equation} u(x,t)=\dfrac{1}{2} \left[ g(x+t)+g(x-t) \right] + \dfrac{1}{2} \int_{x-t}^{x+t}h(y)dy \quad \forall\ (x,t)\in \mathbb{R}^2 \end{equation}

すると、uC2(R2)u\in C^2(\mathbb{R}^2)は与えられたコーシー問題の解である。

説明

(1)(1)ダランベールの公式d’Alembert’s formulaと言う。1次元とは、空間における次元を意味する。

証明

与えられた微分方程式を次のように表そう。

(t+x)(tx)u=uttuxx=0in R2 (\partial_{t}+\partial_{x})(\partial_{t}-\partial_{x})u=u_{tt}-u_{xx}=0 \quad \text{in } \mathbb{R}^{2}

そして、vvを以下のように定義しよう。

v=(tx)u=utuxC1(R2) v=(\partial_{t}- \partial_{x})u=u_{t}-u_{x} \quad \in C^1( \mathbb{R}^2)

すると、与えられた微分方程式は以下の同次輸送方程式となる。

vt+vx=0in R2 v_{t}+v_{x}=0 \quad \text{in } \mathbb{R}^2

すると、a(ξ):=v(ξ,0),ξRa(\xi):=v(\xi,0), \xi \in \mathbb{R}とした時、v(x,t)=a(xt)v(x,t)=a(x-t)である。vvの定義により、以下が満たされる。

utux=a(xt) (x,t)R2 u_{t}-u_{x}=a(x-t) \quad \forall\ (x,t)\in \mathbb{R}^2

これは非同次輸送方程式である。u(x,0)=g(x)u(x,0)=g(x)であるので、非同次輸送方程式の解は以下のように与えられる。

u(x,t)= g(x+t)+0ta(x+(st)(1)s)ds= g(x+t)+0ta(x+t2s)ds= g(x+t)+12xtx+ta(y)dy \begin{align*} u(x,t) =&\ g(x+t)+\int_{0}^t a(x+(s-t)(-1)-s)ds \\ =&\ g(x+t) + \int_{0}^t a(x+t-2s)ds \\ =&\ g(x+t) +\dfrac{1}{2}\int_{x-t}^{x+t}a(y)dy \end{align*}

3番目の等号は2s+x+t=y-2s+x+t=yに置き換えると成立する。gC2g \in C^2そしてvC1v \in C^1であるので、uuttに関して微分すると、以下を得る。

ut(x,t)=g(x+t)+12(a(x+t)+a(xt)) u_{t}(x,t)=g^{\prime}(x+t)+\dfrac{1}{2}\big( a(x+t)+a(x-t)\big)

仮定により、ut(x,0)=h(x)u_{t}(x,0)=h(x)であるので、以下が成立する。

h(x)=g(x)+a(x)      a(x)=h(x)g(x) h(x)=g^{\prime}(x)+a(x) \ \implies \ a(x)=h(x)-g^{\prime}(x)

したがって、u(x,t)u(x,t)は以下のようである。

u(x,t)= g(x+t)+12xtx+t[h(y)g(y)]dy= 12[g(x+t)+g(xt)]+12xtx+th(y)dy (x,t)R2 \begin{align*} u(x,t) =&\ g(x+t)+\dfrac{1}{2}\int_{x-t}^{x+t} \left[ h(y)-g^{\prime}(y) \right] dy \\ =&\ \dfrac{1}{2}\left[ g(x+t)+g(x-t) \right] + \dfrac{1}{2} \int_{x-t}^{x+t}h(y)dy \quad \forall \ (x,t)\in \mathbb{R}^2 \end{align*}


  1. Lawrence C. Evans, Partial Differential Equations (2nd Edition, 2010), p67 ↩︎