logo

加法性を持つ連続関数の性質 📂関数

加法性を持つ連続関数の性質

定理

  • [1] 連続関数 f:RRf : \mathbb{R} \to \mathbb{R} が全ての x,yRx, y \in \mathbb{R} に対して f(x+y)=f(x)+f(y)f(x + y) = f(x) + f(y) を満たす場合 f(x)=f(1)x f(x) = f(1) x
  • [2] 連続関数 g:R(0,)g : \mathbb{R} \to ( 0 , \infty ) が全ての x,yRx, y \in \mathbb{R} に対して g(x+y)=g(x)g(y)g(x + y) = g(x) g(y) を満たす場合 g(x)=(g(1))x g(x) = \left( g(1) \right)^x

説明

f(x+y)=f(x)+f(y)f(x + y) = f(x) + f(y) のように、加法が関数を通じて保持される性質を加法性と呼び、乗法が保持される性質を乗法性と呼ぶ。gg加法性乗法性が半々に混ざった感じのホモモルフィズムです。

証明

戦略:まず、有理数が関数の内外を移動できることを示し、次に xx に収束する有理数の数列を作る。連続性が保証されているので lim\lim も関数の内外を移動する点として利用する。

[1]

パート 1. f(x)=f(x)f(-x) = - f(x)

加法性により f(0)=f(0+0)=f(0)+f(0)    f(0)=0 f( 0 ) = f( 0 + 0 ) = f(0) + f(0) \implies f(0) = 0 同様に加法性により 0=f(0)=f(x+(x))=f(x)+f(x)    f(x)=f(x) 0 = f( 0 ) = f( x + (-x) ) = f(x) + f( -x ) \implies f(-x) = - f(x)


パート 2. f(qx)=qf(x)f(qx) = q f(x)

nNn \in \mathbb{N} に対して f(nx)=f(x++xn)=f(x)++f(x)n=nf(x)    f(nx)=nf(x) f(nx) = f \left( \underbrace{x + \cdots + x}_{n} \right) = \underbrace{f(x) + \cdots + f(x)}_{n} = n f(x) \implies f(nx) = nf(x) y:=xn\displaystyle y := {{ x } \over {n}} とすると f(x)=f(ny)=nf(y)=nf(xn)    f(xn)=1nf(x) f(x) = f(ny) = n f(y) = n f \left( {{x} \over {n}} \right) \implies f \left( {{x} \over {n}} \right) = {{1} \over {n}} f(x) そしてパート 1によると、この性質は負の数に対しても成り立つので、全ての qQq \in \mathbb{Q} に対して f(qx)=qf(x) f(qx) = q f(x)


パート 3. f(x)=mxf(x) = mx

xRx \in \mathbb{R} に収束する有理数の数列、{qn}nN\left\{ q_{n} \right\}_{n \in \mathbb{N}} を定義するとパート 2と ff連続性に基づいて

f(x)=f(x1)=f(limnqn1)=limnf(qn1)=limnqnf(1)=f(1)x \begin{align*} f(x) =& f( x \cdot 1 ) \\ =& f( \lim_{n \to \infty} q_{n} \cdot 1 ) \\ =& \lim_{n \to \infty} f( q_{n} \cdot 1 ) \\ =& \lim_{n \to \infty} q_{n} f( 1 ) = f(1) x \end{align*}

[2]

パート 1. g(x)=(g(x))1\displaystyle g(-x) = \left( g (x) \right)^{-1}

g(x)0g(x) \ne 0 なので g(0)=g(0+0)=g(0)g(0)    g(0)=1 g( 0 ) = g( 0 + 0 ) = g(0) g(0) \implies g(0) = 1 同様に 1=g(0)=g(x+(x))=g(x)g(x)    g(x)=1g(x) 1 = g( 0 ) = g( x + (-x) ) = g(x) g( -x ) \implies g(-x) = {{1} \over {g(x)}}


パート 2. g(qx)=(g(x))qg(qx) = \left( g(x) \right)^{q}

nNn \in \mathbb{N} に対して g(nx)=g(x++xn)=g(x)××g(x)n=(g(x))n    g(nx)=(g(x))n g(nx) = g \left( \underbrace{x + \cdots + x}_{n} \right) = \underbrace{ g(x) \times \cdots \times g(x)}_{n} = \left( g(x) \right)^{n} \implies g(nx) = \left( g(x) \right)^{n} y:=xn\displaystyle y := {{ x } \over {n}} とすると g(x)=g(ny)=(g(y))n=(g(xn))n    g(xn)=(g(x))1n g(x) = g(ny) = \left( g(y) \right)^{n} = \left( g \left( {{x} \over {n}} \right) \right)^{n} \implies g \left( {{x} \over {n}} \right) = \left( g(x) \right)^{{1} \over {n}} そしてパート 1によると、この性質は負の数に対しても成り立つので、全ての qQq \in \mathbb{Q} に対して g(qx)=(g(x))q g(qx) = \left( g(x) \right)^{q}


パート 3.

g(x)=axg(x) = a^x そして xRx \in \mathbb{R} に収束する有理数の数列、{qn}nN\left\{ q_{n} \right\}_{n \in \mathbb{N}} を定義するとパート 2と gg連続性に基づいて g(x)=g(x1)=g(limnqn1)=limng(qn1)=limng(1)qn=g(1)limnqn=(g(1))x \begin{align*} g(x) =& g( x \cdot 1 ) \\ =& g( \lim_{n \to \infty} q_{n} \cdot 1 ) \\ =& \lim_{n \to \infty} g( q_{n} \cdot 1 ) \\ =& \lim_{n \to \infty} g( 1 )^{q_{n}} \\ =& g( 1 )^{ \displaystyle \lim_{n \to \infty} q_{n}} \\ =& \left( g(1) \right)^{x} \end{align*}