logo

Multipole Expansion of Potential and Dipole Moments 📂Electrodynamics

Multipole Expansion of Potential and Dipole Moments

Multiple Expansion

When a distribution of charges is viewed from sufficiently far away, it appears almost as though it were a point charge. In other words, if the total charge of the charge distribution is QQ, it would feel as if there’s a single point charge with charge QQ when viewed from afar. This means that the potential can be approximated as 14πϵ0Qr\dfrac{1}{4\pi\epsilon_{0}} \dfrac{Q}{r}.

But if the total charge is 00, then the question arises as to whether it’s correct to approximate the potential as 00. Multiple expansion is the answer to how to express the potential as an approximate formula when the total charge is 00. Expressing the potential V(r)V(\mathbf{r}) as a series with respect to 1rn\dfrac{1}{r^{n}} is called a multipole expansion.

The potential at position r\mathbf{r} is as follows.

V(r)=14πϵ01ρ(r)dτ \begin{equation} V(\mathbf{r}) = \dfrac{1}{4\pi\epsilon_{0}} \int \dfrac{1}{\cR}\rho (\mathbf{r}^{\prime})d\tau^{\prime} \label{1} \end{equation}

Where =rr(=)\bcR = \mathbf{r} - \mathbf{r}^{\prime} (\cR = \left| \bcR \right|) is the separation vector.

25.JPG

By using the law of cosines to find the magnitude of \cR,

2= r2+(r)22rrcosα= r2[1+(rr)22rrcosα]= r2[1+rr(rr2cosα)] \begin{align*} \cR ^2 =&\ r^2+(r^{\prime})^2-2rr^{\prime}\cos\alpha \\ =&\ r^2\left[1+\left(\dfrac{r^{\prime}}{r}\right)^2-2\dfrac{r^{\prime}}{r}\cos\alpha\right] \\ =&\ r^2\left[1+\dfrac{r^{\prime}}{r}\left( \dfrac{r^{\prime}}{r}-2\cos\alpha\right)\right] \end{align*}

For convenience, let’s completely substitute the second term in the angle brackets with ϵ=rr(rr2cosα)\epsilon=\dfrac{r^{\prime}}{r}\left( \dfrac{r^{\prime}}{r}-2\cos\alpha \right). Then the following holds true.

=r1+ϵ    1=1r(1+ϵ)1/2 \cR=r\sqrt{1+\epsilon} \implies \dfrac{1}{\cR} = \dfrac{1}{r}(1+\epsilon)^{-1/2}

If r\mathbf{r} is a place very far from the charge distribution, then rr\dfrac{r^{\prime}}{r} becomes a very small value and ϵ1\epsilon \ll 1 is valid.

Binomial Series

If x<1|x| < 1, then,

(1+x)α=1+αx+α(α1)2!x2+α(α1)(α2)3!x3+ (1 + x )^{\alpha} = 1 + \alpha x + \dfrac{\alpha (\alpha-1)}{2!}x^{2} + \dfrac{\alpha (\alpha-1)(\alpha-2)}{3!}x^{3} + \cdots

Therefore, (1+ϵ)1/2(1+\epsilon)^{-1/2} can be solved as a binomial series.

1=1r(1+ϵ)1/2=1r(112ϵ+38ϵ2516ϵ3+) \dfrac{1}{\cR} = \dfrac{1}{r}(1+\epsilon)^{-1/2} = \dfrac{1}{r}\left( 1- \dfrac{1}{2}\epsilon+\dfrac{3}{8}\epsilon ^2 -\dfrac{5}{16}\epsilon ^3 +\cdots \right)

Substituting ϵ\epsilon back into its original form,

1=1r[112rr(rr2cosα)+38(rr)2(rr2cosα)2516(rr)3(rr2cosα)3+] \dfrac{1}{\cR}=\dfrac{1}{r}\left[ 1- \dfrac{1}{2}\dfrac{r^{\prime}}{r}\left( \dfrac{r^{\prime}}{r}-2\cos\alpha \right) +\dfrac{3}{8}\left( \dfrac{r^{\prime}}{r} \right)^2 \left( \dfrac{r^{\prime}}{r}-2\cos\alpha \right) ^2 -\dfrac{5}{16}\left( \dfrac{r^{\prime}}{r}\right)^3 \left( \dfrac{r^{\prime}}{r}-2\cos\alpha \right) ^3 +\cdots \right]

Organizing according to each order of rr\dfrac{r^{\prime}}{r} gives the following. For detailed process, see the Appendix.

1=1r[1+(rr)(cosα)+(rr)2(3cos2α12)+(rr)3(5cos2α3cosα2)+] \dfrac{1}{\cR}=\dfrac{1}{r}\left[ 1+\left(\dfrac{r^{\prime}}{r}\right)\left( \cos\alpha \right) +\left( \dfrac{r^{\prime}}{r} \right)^2 \left( \dfrac{3\cos^2\alpha -1 }{2}\right) +\left( \dfrac{r^{\prime}}{r}\right)^3 \left( \dfrac{5\cos^2\alpha-3\cos\alpha}{2} \right) +\cdots \right]

Here, each bracket can be expressed as the series in the form of n=0an(rr)n\sum \limits_{n=0}^{\infty} a_{n}\left( \dfrac{r^{\prime}}{r}\right)^n. Each coefficient ana_{n} is as follows.

a0= 1a1= cosαa2= 3cos2α12a3= (5cos2α3cosα2) \begin{align*} a_{0} =&\ 1 \\ a_{1} =&\ \cos\alpha \\ a_{2} =&\ \dfrac{3\cos^2\alpha-1}{2} \\ a_{3} =&\ \left( \dfrac{5\cos^2\alpha-3\cos\alpha}{2} \right) \\ \vdots & \end{align*}

This is the same as the Legendre polynomial Pn(cosα)P_{n}(\cos \alpha) for cosα\cos\alpha. Therefore, summarizing,

1=1rn=0(rr)nPn(cosα) \dfrac{1}{\cR}=\dfrac{1}{r}\sum\limits_{n=0}^{\infty}\left( \dfrac{r^{\prime}}{r}\right)^n P_{n}(\cos\alpha)

Substituting this into the potential formula (1)\eqref{1} and bringing out rr, which is independent of the integration, gives us the following.

V(r)=14πϵ0n=01rn+1(r)nPn(cosα)ρ(r)dτ V(\mathbf{r})=\dfrac{1}{4\pi\epsilon_{0}}\sum \limits_{n=0}^{\infty} \dfrac{1}{r^{n+1}} \int (r^{\prime})^nP_{n}(\cos\alpha) \rho (\mathbf{r}^{\prime}) d\tau^{\prime}

Expanding this series again results in

V(r)=14πϵ0[1rrcosαρ(r)dτ+1r2rcosαρ(r)dτ+1r3(r)23cos2α12ρ(r)dτ+] \begin{align*} V(\mathbf{r}) = \dfrac{1}{4\pi\epsilon_{0}} \bigg[ &\dfrac{1}{r} \int r^{\prime}\cos\alpha \rho (\mathbf{r}^{\prime})d\tau^{\prime} \\ &+ \dfrac{1}{r^2}\int r^{\prime}\cos\alpha \rho (\mathbf{r}^{\prime})d\tau^{\prime} + \dfrac{1}{r^3}\int(r^{\prime})^2\dfrac{3\cos^2\alpha -1 }{2}\rho (\mathbf{r}^{\prime})d\tau^{\prime} + \cdots \bigg] \end{align*}

The first term is the potential created by a monopole, the second term is by a dipole, and the third term is by a quadrupole. The nnth term is related to the 2n12^{n-1}-polar term.

Dipole Moment and Dipole Term

Since the multipole expansion is a series with respect to the reciprocal of rr, usually, when rr is large, the monopole term is the largest. mono refers to monopole.

Vmono(r)=14πϵ0Qr V_{\text{mono}}(\mathbf{r}) = \dfrac{1}{4\pi\epsilon_{0}}\dfrac{Q}{r}

If the total charge of the gathered charges is 00, then the monopole term is 00. Otherwise, ++ and - can pair up to make 00, but since there can only be one monopole term, it isn’t possible. Hence, if the dipole term isn’t 00, then the dipole term is the largest. dip refers to dipole.

Vdip(r)=14πϵ01r2rcosαρ(r)dτ V_{\text{dip}}(\mathbf{r})=\dfrac{1}{4\pi\epsilon_{0}}\dfrac{1}{r^2}\int r^{\prime} \cos \alpha \rho (\mathbf{r}^{\prime})d\tau^{\prime}

Here, since r^r=rcosα\hat{\mathbf{r}}\cdot\mathbf{r}^{\prime}=r^{\prime}\cos\alpha,

Vdip(r)=14πϵ01r2r^rρ(r)dτ V_{\text{dip}}(\mathbf{r})=\dfrac{1}{4\pi\epsilon_{0}}\dfrac{1}{r^2}\hat{\mathbf{r}}\cdot\int \mathbf{r}^{\prime} \rho (\mathbf{r}^{\prime})d\tau^{\prime}

This integral value is independent of r\mathbf{r} and is specifically named the dipole moment of the charge distribution, denoted as p\mathbf{p}.

p=rρ(r)dτ \mathbf{p}=\int\mathbf{r}^{\prime}\rho (\mathbf{r}^{\prime})d\tau^{\prime}

The dipole moment allows for a simple representation of the dipole’s potential.

Vdip(r)=14πϵ0pr^r2 V_{\text{dip}}(\mathbf{r})=\dfrac{1}{4\pi\epsilon_{0}}\dfrac{\mathbf{p}\cdot\hat{\mathbf{r}} } {r^2}

Appendix

112rr(rr2cosα)+38(rr)2(rr2cosα)2516(rr)3(rr2cosα)3+ 1- \dfrac{1}{2}\dfrac{r^{\prime}}{r}\left( \dfrac{r^{\prime}}{r}-2\cos\alpha \right) +\dfrac{3}{8}\left( \dfrac{r^{\prime}}{r} \right)^{2} \left( \dfrac{r^{\prime}}{r}-2\cos\alpha \right)^2 -\dfrac{5}{16}\left( \dfrac{r^{\prime}}{r}\right)^3 \left( \dfrac{r^{\prime}}{r}-2\cos\alpha \right)^3 +\cdots

Expanding the square and cubic terms from the above equation yields

112rr(rr2cosα)+38(rr)2[(rr)24rcosαr+4cos2α] 1- \dfrac{1}{2}\dfrac{r^{\prime}}{r}\left( \dfrac{r^{\prime}}{r}-2\cos\alpha \right) +\dfrac{3}{8}\left( \dfrac{r^{\prime}}{r} \right)^2 \left[ \left( \dfrac{r^{\prime}}{r}\right)^2-\dfrac{4r^{\prime}\cos\alpha}{r}+4\cos^2\alpha \right]

516(rr)3[(rr)33(rr)22cosα+3(rr)4cos2α8cos3α]+ -\dfrac{5}{16}\left( \dfrac{r^{\prime}}{r}\right)^3 \left[ \left( \dfrac{r^{\prime}}{r}\right)^3 -3\left(\dfrac{r^{\prime}}{r}\right)^22\cos\alpha + 3\left( \dfrac{r^{\prime}}{r}\right)4\cos^2\alpha-8\cos^3\alpha \right] +\cdots

Now, organizing according to the order of rr\dfrac{r^{\prime}}{r} gives

1+(rr)cosα+(rr)2(12+32cos2α)+(rr)3(32cosα+52cos3α)+ 1+\left(\dfrac{r^{\prime}}{r}\right)\cos\alpha +\left(\dfrac{r^{\prime}}{r}\right)^2\left(-\dfrac{1}{2} +\dfrac{3}{2}\cos^2\alpha \right)+\left( \dfrac{r^{\prime}}{r} \right)^3 \left( -\dfrac{3}{2}\cos\alpha +\dfrac{5}{2}\cos^3\alpha \right) + \cdots

Upon organizing this gives

1+(rr)(cosα)+(rr)2(3cos2α12)+(rr)3(5cos2α3cosα2)+ 1+\left(\dfrac{r^{\prime}}{r}\right)\left( \cos\alpha \right) +\left( \dfrac{r^{\prime}}{r} \right)^2 \left( \dfrac{3\cos^2\alpha -1 }{2}\right) +\left( \dfrac{r^{\prime}}{r}\right)^3 \left( \dfrac{5\cos^2\alpha-3\cos\alpha}{2} \right) +\cdots