logo

Proof of the Second Cosine Law Using the Definition of Trigonometric Functions 📂Functions

Proof of the Second Cosine Law Using the Definition of Trigonometric Functions

Formula

2.JPG

For the triangle given above, the following equations hold true, and they are collectively known as the law of cosines.

{a2=b2+c22bccosαb2=a2+c22accosβc2=a2+b22abcosγ \begin{cases} a^{2} =b^{2}+c^{2}-2bc\cos\alpha \\ b^{2}=a^{2}+c^{2}-2ac\cos\beta \\ c^{2}=a^{2}+b^{2}-2ab\cos\gamma \end{cases}

Proof

3.JPG

From the triangle in the upper left corner of the diagram, we obtain the following equation.

a=BHa+HaC=ccosβ+bcosγ \begin{align} a &= \overline{BH_{a}}+\overline{H_{a}C} \nonumber \\ &= c\cos\beta + b\cos\gamma \label{eq1} \end{align}

Multiplying both sides by aa yields:

a2=accosβ+abcosγ a^{2}=ac\cos\beta + ab\cos \gamma

The same applies to bb and cc, resulting in:

b=AHb+HbC=ccosα+acosγ    b2=bccosα+abcosγ \begin{align} && b &= \overline{AH_{b}}+\overline{H_{b}C} \nonumber \\ && &= c\cos\alpha + a\cos\gamma \label{eq2} \\ && \implies b^{2}&=bc\cos\alpha + ab\cos\gamma \nonumber \end{align}

c=AHc+HcB=bcosα+acosβ    c2=bccosα+accosβ \begin{align} &&c &= \overline{AH_{c}}+\overline{H_{c}B} \nonumber \\ && &= b\cos\alpha + a\cos\beta \label{eq3} \\ \implies &&c^{2}&=bc\cos\alpha + ac\cos\beta \nonumber \end{align}

Therefore, we obtain the following result:

b2+c2=(bccosα+abcosγ)+(bccosα+accosβ)=(abcosγ+accosβ)+2bccosα=a2+2bccosα \begin{align*} b^{2}+c^{2} &= (bc\cos\alpha + ab\cos\gamma) + (bc\cos\alpha + ac\cos\beta) \\ &= (ab\cos\gamma+ ac\cos\beta)+2bc\cos\alpha \\ &= a^{2}+2bc\cos\alpha \end{align*}

Rearranging a2a^{2} gives:

a2=b2+c22bccosα a^{2}=b^{2}+c^{2}-2bc\cos\alpha

The same method can be used to prove b2b^{2} and c2c^{2}.


(1)(1), (2)(2), and (3)(3) are collectively referred to as the first law of cosines.