logo

Product Rule Involving the Del Operator 📂Mathematical Physics

Product Rule Involving the Del Operator

Formulas

Let’s call f=f(x,y,z)f=f(x,y,z) a scalar function. Let’s call A=Axx^+Ayy^+Azz^,B=Bxx^+Byy^+Bzz^\mathbf{A} = A_{x}\hat{\mathbf{x}} + A_{y}\hat{\mathbf{y}} + A_{z}\hat{\mathbf{z}}, \mathbf{B} = B_{x}\hat{\mathbf{x}} + B_{y}\hat{\mathbf{y}} + B_{z}\hat{\mathbf{z}} a vector function. Then, the following equations hold.

  • Gradient

    (a) (fg)=fg+gf\nabla{(fg)}=f\nabla{g}+g\nabla{f}

    (b) (AB)=A×(×B)+B×(×A)+(A)B+(B)A\nabla(\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A})+(\mathbf{A} \cdot \nabla)\mathbf{B}+(\mathbf{B} \cdot \nabla) \mathbf{A}

  • Divergence

    (c) (fA)=f(A)+A(f)\nabla \cdot (f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot (\nabla f)

    (d) (A×B)=B(×A)A(×B)\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})

  • Curl

    (e) ×(fA)=(f)×A+f(×A)\nabla \times (f\mathbf{A}) = (\nabla f) \times \mathbf{A} + f(\nabla \times \mathbf{A})

    (f) ×(A×B)=(B)A(A)B+A(B)B(A)\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} - (\mathbf{A} \cdot \nabla)\mathbf{B} + \mathbf{A} (\nabla \cdot \mathbf{B}) - \mathbf{B} (\nabla \cdot \mathbf{A})

Description

Throughout the proof, we use Einstein notation, so be careful not to get confused. That is, if the same index appears twice in an equation, it means the following.

xiyi=i=13xiyi=x1y1+x2y2+x3y3 x_{i}y_{i}=\sum \limits_{i=1}^{3} x_{i}y_{i}=x_{1}y_{1}+x_{2}y_{2}+x_{3}y_{3}

Also, you should be familiar with using Kronecker delta and Levi-Civita symbol and know the relationship between them to easily follow the proof.

Proof

(a)

Can be easily shown by the definition of gradient and the properties of differentiation.

(fg)= (fg)xx^+(fg)yy^+(fg)zz^= (gfx+fgx)x^+(gfy+fgy)y^+(gfz+fgz)z^= g(fxx^+fyy^+fzz^)+f(gxx^+gyy^+gzz^)= gf+fg \begin{align*} \nabla(fg) =&\ \dfrac{\partial (fg)}{\partial x} \hat{\mathbf{x}}+\dfrac{\partial (fg)}{\partial y} \hat{\mathbf{y}} +\dfrac{\partial (fg)}{\partial z} \hat{\mathbf{z}} \\ =&\ \left( g\dfrac{\partial f}{\partial x} + f\dfrac{\partial g}{\partial x} \right) \hat{\mathbf{x}} +\left( g\dfrac{\partial f}{\partial y} + f\dfrac{\partial g}{\partial y} \right) \hat{\mathbf{y}} + \left( g\dfrac{\partial f}{\partial z} + f\dfrac{\partial g}{\partial z} \right) \hat{\mathbf{z}} \\ =&\ g\left( \dfrac{\partial f}{\partial x}\hat{\mathbf{x}} +\dfrac{\partial f}{\partial y}\hat{\mathbf{y}} + \dfrac{\partial f}{\partial z}\hat{\mathbf{z}} \right) + f\left( \dfrac{\partial g}{\partial x}\hat{\mathbf{x}} +\dfrac{\partial g}{\partial y}\hat{\mathbf{y}} + \dfrac{\partial g}{\partial z}\hat{\mathbf{z}} \right) \\ =&\ g\nabla f+ f\nabla g \end{align*}

(b)

Calculating the left side directly, we get the following.

(AB)= (AB)x1e1+(AB)x2e2+(AB)x3e3= i=13(AB)xiei= i=13(j=13AjBj)xiei= i=13j=13(AjBj)xiei \begin{align*} \nabla \left( \mathbf{A}\cdot \mathbf{B} \right) =&\ \frac{ \partial \left( \mathbf{A}\cdot \mathbf{B} \right)}{ \partial x_{1}}\mathbf{e}_{1}+\frac{ \partial \left( \mathbf{A}\cdot \mathbf{B} \right)}{ \partial x_{2}}\mathbf{e}_{2}+\frac{ \partial \left( \mathbf{A}\cdot \mathbf{B} \right)}{ \partial x_{3}}\mathbf{e}_{3} \\ =&\ \sum \limits_{i=1}^{3} \frac{ \partial \left( \mathbf{A}\cdot \mathbf{B} \right)}{ \partial x_{i}}\mathbf{e}_{i} \\ =&\ \sum \limits_{i=1}^{3} \frac{ \partial \left( \sum _{j=1}^{3}A_{j}B_{j} \right)}{ \partial x_{i}}\mathbf{e}_{i} \\ =&\ \sum \limits_{i=1}^{3}\sum \limits_{j=1}^{3} \frac{ \partial \left( A_{j}B_{j} \right)}{ \partial x_{i}}\mathbf{e}_{i} \end{align*}

Simplifying with Einstein notation, we get the following.

(AB)=(AjBj)xiei=AjxiBjei+AjBjxiei \nabla (\mathbf{A} \cdot \mathbf{B}) = \frac{\partial(A_{j}B_{j})}{\partial x_{i}}\mathbf{e}_{i}=\frac{\partial A_{j}}{\partial x_{i}} B_{j}\mathbf{e}_{i}+A_{j} \frac{\partial B_{j}}{\partial x_{i}} \mathbf{e}_{i}

Then, using the Kronecker delta, the equation can be expressed as follows.

AjxiBjei+AjBjxiei= δjmAjxiBmei+δjmAmBjxiei=δilδjmAjxiBmel+δilδjmAmBjxiel=δjlδjm(AjxiBmel+AmBjxiel)    (AB)= δjlδjm(AjxiBmel+AmBjxiel) \begin{align*} &&\frac{\partial A_{j}}{\partial x_{i}} B_{j}\mathbf{e}_{i}+A_{j} \frac{\partial B_{j}}{\partial x_{i}} \mathbf{e}_{i} =&\ {\color{blue}\delta_{jm}}\frac{ \partial {\color{blue}A_{j}}}{ \partial x_{i}} {\color{blue}B_{m}} \mathbf{e}_{i} + {\color{blue}\delta_{jm} A_{m}}\frac{ \partial {\color{blue}B_{j}} }{ \partial x_{i} }\mathbf{e}_{i} \\ && =&{\color{red}\delta_{il}}{\color{blue}\delta_{jm}}\frac{ {\color{red}\partial} {\color{blue}A_{j}}}{ {\color{red}\partial x_{i}} } {\color{blue}B_{m}} {\color{red}\mathbf{e}_{l}} + {\color{red}\delta_{il}}{\color{blue}\delta_{jm} A_{m}} {\color{red}\frac{ \partial {\color{blue}B_{j}} }{ \partial x_{i} }} {\color{red}\mathbf{e}_{l}} \\ && =&{\color{red}\delta_{jl}}{\color{blue}\delta_{jm}} \left( {\color{red}\frac{ \partial {\color{blue}A_{j}}}{ \partial x_{i} }} {\color{blue}B_{m}}\color{red} {\mathbf{e}_{l}} + {\color{blue}A_{m}}{\color{red}\frac{ \partial {\color{blue}B_{j}} }{ \partial x_{i} } \mathbf{e}_{l} }\right) \\ \implies && \nabla \left( \mathbf{A} \cdot \mathbf{B} \right) =&\ \delta_{jl}\delta_{jm} \left( \frac{ \partial A_{j} }{ \partial x_{i} } B_{m} \mathbf{e}_{l} + A_{m}\frac{ \partial B_{j} }{ \partial x_{i} } \mathbf{e}_{l} \right) \end{align*}

Furthermore, since ϵijkϵklm=δilδjmδimδjl\epsilon_{ijk} \epsilon_{klm} = \delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}, we can expand the equation as follows.

(AB)= (ϵijkϵklm+δimδjl)(AjxiBmel+AmBjxiel)= ϵijkϵklmAjxiBmel+ϵijkϵklmAmBjxiel+δimδjlAjxiBmel+δimδjlAmBjxiel \begin{align*} \nabla(\mathbf{A} \cdot \mathbf{B}) =&\ (\epsilon_{ijk} \epsilon_{klm} + \delta_{im} \delta_{jl}) \left(\frac {\partial A_{j}}{\partial x_{i}}B_{m} \mathbf{e}_{l} + A_{m} \frac{\partial B_{j}}{\partial x_{i}}\mathbf{e}_{l}\right) \\ =&\ \epsilon_{ijk} \epsilon_{klm } \frac{\partial A_{j}}{\partial x_{i}}B_{m} \mathbf{e}_{l} + \epsilon_{ijk} \epsilon_{klm} A_{m} \frac{\partial B_{j}}{\partial x_{i}} \mathbf{e}_{l} + \delta_{im} \delta_{jl} \frac{\partial A_{j}}{\partial x_{i}} B_{m} \mathbf{e}_{l} + \delta_{im} \delta_{jl}A_{m} \frac{\partial B_{j}}{\partial x_{i}} \mathbf{e}_{l} \end{align*}

Here, by the definition of the Levi-Civita symbol, since ϵijkAjxi=(×A)k\epsilon_{ijk} \dfrac{\partial A_{j}}{\partial x_{i}}=(\nabla \times \mathbf{A})_{k} and ϵijkBjxi=(×B)k\epsilon_{ijk} \dfrac {\partial B_{j}}{\partial x_{i}}=(\nabla \times \mathbf{B})_{k}, we obtain the following result.

(AB)= ϵklm(×A)kBmel^+ϵklmAm(×B)kel^+AjxiBiej^+AiBjxiej^= B×(×A)+A×(×B)+(B)A+(A)B \begin{align*} \nabla (\mathbf{A} \cdot \mathbf{B}) =&\ \epsilon _{ klm }(\nabla \times \mathbf{A})_{ k }B_{ m }\hat { \mathbf{e}_{ l } }+\epsilon _{ klm }A_{ m }(\nabla \times \mathbf{B})_{ k }\hat { \mathbf{e}_{ l } }+\frac { \partial A_{ j } }{ \partial x_{ i } }B_{ i }\hat { e_{ j} }+A_{ i }\frac { \partial B_{ j } }{ \partial x_{ i } }\hat { \mathbf{e}_{ j } } \\ =&\ \mathbf{B}\times (\nabla \times \mathbf{A})+\mathbf{A} \times (\nabla \times \mathbf{B})+(\mathbf{B} \cdot \nabla )\mathbf{A}+(\mathbf{A} \cdot \nabla )\mathbf{B} \end{align*}

(c)​

(fA)= δiji(fAj)= δij(if)Aj+δijf(iAj)= (if)Ai+f(iAi)= (f)A+f(A) \begin{align*} \nabla \cdot (f \mathbf{A}) =&\ \delta _{ ij }\nabla _{ i }(fA_{ j }) \\ =&\ \delta _{ ij }(\nabla _{ i }f)A_{ j }+\delta _{ ij }f(\nabla _{ i }A_{ j }) \\ =&\ (\nabla _{ i }f)A_{ i }+f(\nabla _{ i }A_{ i }) \\ =&\ (\nabla f)\cdot \mathbf{A}+f(\nabla \cdot \mathbf{A}) \end{align*}

(d)

(A×B)=δiji(A×B)j=δiji(ϵjklAkBl)=δijϵjkli(AkBl)=δijϵjkl(iAk)Bl+δijϵjklAk(iBl)=(ϵjkljAk)Bl+Ak(ϵjkljBl)=(×A)lBlAk(×B)k=(×A)BA(×B) \begin{align*} \nabla \cdot (\mathbf{A} \times \mathbf{B}) &= \delta _{ ij }\nabla _{ i }(\mathbf{A} \times \mathbf{B})_{ j } \\ &= \delta _{ ij }\nabla _{ i }(\epsilon _{ jkl }A_{ k }B_{ l }) \\ &= \delta _{ ij }\epsilon _{ jkl }\nabla _{ i }(A_{ k }B_{ l }) \\ &= \delta _{ ij }\epsilon _{ jkl }(\nabla _{ i }A_{ k })B_{ l }+\delta _{ ij }\epsilon _{ jkl }A_{ k }(\nabla _{ i }B_{ l }) \\ &= (\epsilon _{ jkl }\nabla _{ j }A_{ k })B_{ l }+A_{ k }(\epsilon _{ jkl }\nabla _{ j }B_{ l }) \\ &= (\nabla \times A)_{ l }B_{ l }-A_{ k }(\nabla \times B)_{ k } \\ &= (\nabla \times \mathbf{A})\cdot \mathbf{B}-\mathbf{A}\cdot (\nabla \times \mathbf{B}) \end{align*}

(e)​

×(fA)=ϵijki(fAj)ek=ϵijk(if)Ajek+ϵijkf(iAj)ek=(f)×A+fϵijk(iAj)ek=(f)×A+f(×A)=f(×A)A×(f) \begin{align*} \nabla \times (f\mathbf{A}) &= \epsilon _{ ijk }\nabla _{ i }(fA_{ j })\mathbf{e}_{k} \\ &= \epsilon _{ ijk }(\nabla _{ i }f)A_{ j }\mathbf{e}_{k}+\epsilon _{ ijk }f(\nabla _{ i }A_{ j })\mathbf{e}_{k} \\ &= (\nabla f)\times \mathbf{A}+f\epsilon _{ ijk }(\nabla _{ i }A_{ j })\mathbf{e}_{k} \\ &= (\nabla f)\times \mathbf{A}+f(\nabla \times \mathbf{A}) \\ &= f(\nabla \times \mathbf{A})-\mathbf{A} \times (\nabla f) \end{align*}

(f)

If you’re not familiar with Einstein notation, it may be difficult to follow the proof.

×(A×B)= ϵijki(A×B)jek= ϵijki(ϵjlmAlBm)ek= ϵijkϵjlmi(AlBm)ek= ϵjkiϵjlm[Bm(iAl)ek+Al(iBm)ek]= (δklδimδkmδil)[Bm(iAl)ek+Al(iBm)ek]= δklδimBm(iAl)ekδkmδilBm(iAl)ek+δklδimAl(iBm)ekδkmδilAl(iBm)ek= Bi(iAk)ekBk(iAi)ek+Ak(iBi)ekAi(iBk)ek= (B)A(A)B+A(B)(A)B= (B)A(A)B+A(B)B(A) \begin{align*} & \nabla \times (\mathbf{A}\times \mathbf{B}) \\ =&\ \epsilon_{ijk} \nabla_{i} \left(\mathbf{A}\times \mathbf{B}\right)_{j} \mathbf{e}_{k} \\ =&\ \epsilon_{ijk} \nabla_{i} (\epsilon_{jlm} A_{l} B_{m})\mathbf{e}_{k} \\ =&\ \epsilon_{ijk} \epsilon_{jlm} \nabla_{i} (A_{l} B_{m}) \mathbf{e}_{k} \\ =&\ \epsilon_{jki} \epsilon_{jlm} \left[ B_{m}(\nabla_{i} A_{l}) \mathbf{e}_{k} + A_{l} (\nabla_{i} B_{m}) \mathbf{e}_{k} \right] \\ =&\ (\delta_{kl} \delta_{im} - \delta_{km} \delta_{il} ) [ B_{m} (\nabla_{i} A_{l} ) \mathbf{e}_{k} + A_{l} ( \nabla_{i} B_{m} ) \mathbf{e}_{k} ] \\ =&\ \delta_{kl} \delta_{im} B_{m} ( \nabla_{i} A_{l}) \mathbf{e}_{k} - \delta_{km} \delta_{il} B_{m} (\nabla_{ i} A_{l} ) \mathbf{e}_{k} + \delta_{kl} \delta_{im} A_{l} ( \nabla_{i} B_{m} ) \mathbf{e}_{k} - \delta_{km} \delta_{il} A_{l} ( \nabla_{i} B_{m} ) \mathbf{e}_{k} \\ =&\ B_{i} ( \nabla_{i} A_{k}) \mathbf{e}_{k} - B_{k} (\nabla_{i} A_{i} ) \mathbf{e}_{k} + A_{k} ( \nabla_{i} B_{i} ) \mathbf{e}_{k} - A_{i} ( \nabla_{i} B_{k} ) \mathbf{e}_{k} \\ =&\ (\mathbf{B}\cdot \nabla )\mathbf{A}-(\nabla \cdot \mathbf{A})\mathbf{B}+\mathbf{A}(\nabla \cdot \mathbf{B})-(\mathbf{A}\cdot \nabla )\mathbf{B} \\ =&\ (\mathbf{B}\cdot \nabla )\mathbf{A}-(\mathbf{A}\cdot \nabla )\mathbf{B}+\mathbf{A}(\nabla \cdot \mathbf{B})-\mathbf{B}(\nabla \cdot \mathbf{A}) \end{align*}

The fourth line holds due to ϵjkiϵjlm=δklδimδkmδil\epsilon_{jki} \epsilon_{jlm} = \delta_{kl} \delta_{im} - \delta_{km} \delta_{il}. The seventh line holds due to Einstein Notation.