Product Rule Involving the Del Operator
📂Mathematical PhysicsProduct Rule Involving the Del Operator
Let’s call f=f(x,y,z) a scalar function. Let’s call A=Axx^+Ayy^+Azz^,B=Bxx^+Byy^+Bzz^ a vector function. Then, the following equations hold.
Gradient
(a) ∇(fg)=f∇g+g∇f
(b) ∇(A⋅B)=A×(∇×B)+B×(∇×A)+(A⋅∇)B+(B⋅∇)A
Divergence
(c) ∇⋅(fA)=f(∇⋅A)+A⋅(∇f)
(d) ∇⋅(A×B)=B⋅(∇×A)−A⋅(∇×B)
Curl
(e) ∇×(fA)=(∇f)×A+f(∇×A)
(f) ∇×(A×B)=(B⋅∇)A−(A⋅∇)B+A(∇⋅B)−B(∇⋅A)
Description
Throughout the proof, we use Einstein notation, so be careful not to get confused. That is, if the same index appears twice in an equation, it means the following.
xiyi=i=1∑3xiyi=x1y1+x2y2+x3y3
Also, you should be familiar with using Kronecker delta and Levi-Civita symbol and know the relationship between them to easily follow the proof.
Proof
(a)
Can be easily shown by the definition of gradient and the properties of differentiation.
∇(fg)==== ∂x∂(fg)x^+∂y∂(fg)y^+∂z∂(fg)z^ (g∂x∂f+f∂x∂g)x^+(g∂y∂f+f∂y∂g)y^+(g∂z∂f+f∂z∂g)z^ g(∂x∂fx^+∂y∂fy^+∂z∂fz^)+f(∂x∂gx^+∂y∂gy^+∂z∂gz^) g∇f+f∇g
■
(b)
Calculating the left side directly, we get the following.
∇(A⋅B)==== ∂x1∂(A⋅B)e1+∂x2∂(A⋅B)e2+∂x3∂(A⋅B)e3 i=1∑3∂xi∂(A⋅B)ei i=1∑3∂xi∂(∑j=13AjBj)ei i=1∑3j=1∑3∂xi∂(AjBj)ei
Simplifying with Einstein notation, we get the following.
∇(A⋅B)=∂xi∂(AjBj)ei=∂xi∂AjBjei+Aj∂xi∂Bjei
Then, using the Kronecker delta, the equation can be expressed as follows.
⟹∂xi∂AjBjei+Aj∂xi∂Bjei===∇(A⋅B)= δjm∂xi∂AjBmei+δjmAm∂xi∂Bjeiδilδjm∂xi∂AjBmel+δilδjmAm∂xi∂Bjelδjlδjm(∂xi∂AjBmel+Am∂xi∂Bjel) δjlδjm(∂xi∂AjBmel+Am∂xi∂Bjel)
Furthermore, since ϵijkϵklm=δilδjm−δimδjl, we can expand the equation as follows.
∇(A⋅B)== (ϵijkϵklm+δimδjl)(∂xi∂AjBmel+Am∂xi∂Bjel) ϵijkϵklm∂xi∂AjBmel+ϵijkϵklmAm∂xi∂Bjel+δimδjl∂xi∂AjBmel+δimδjlAm∂xi∂Bjel
Here, by the definition of the Levi-Civita symbol, since ϵijk∂xi∂Aj=(∇×A)k and ϵijk∂xi∂Bj=(∇×B)k, we obtain the following result.
∇(A⋅B)== ϵklm(∇×A)kBmel^+ϵklmAm(∇×B)kel^+∂xi∂AjBiej^+Ai∂xi∂Bjej^ B×(∇×A)+A×(∇×B)+(B⋅∇)A+(A⋅∇)B
■
(c)
∇⋅(fA)==== δij∇i(fAj) δij(∇if)Aj+δijf(∇iAj) (∇if)Ai+f(∇iAi) (∇f)⋅A+f(∇⋅A)
■
(d)
∇⋅(A×B)=δij∇i(A×B)j=δij∇i(ϵjklAkBl)=δijϵjkl∇i(AkBl)=δijϵjkl(∇iAk)Bl+δijϵjklAk(∇iBl)=(ϵjkl∇jAk)Bl+Ak(ϵjkl∇jBl)=(∇×A)lBl−Ak(∇×B)k=(∇×A)⋅B−A⋅(∇×B)
■
(e)
∇×(fA)=ϵijk∇i(fAj)ek=ϵijk(∇if)Ajek+ϵijkf(∇iAj)ek=(∇f)×A+fϵijk(∇iAj)ek=(∇f)×A+f(∇×A)=f(∇×A)−A×(∇f)
■
(f)
If you’re not familiar with Einstein notation, it may be difficult to follow the proof.
=========∇×(A×B) ϵijk∇i(A×B)jek ϵijk∇i(ϵjlmAlBm)ek ϵijkϵjlm∇i(AlBm)ek ϵjkiϵjlm[Bm(∇iAl)ek+Al(∇iBm)ek] (δklδim−δkmδil)[Bm(∇iAl)ek+Al(∇iBm)ek] δklδimBm(∇iAl)ek−δkmδilBm(∇iAl)ek+δklδimAl(∇iBm)ek−δkmδilAl(∇iBm)ek Bi(∇iAk)ek−Bk(∇iAi)ek+Ak(∇iBi)ek−Ai(∇iBk)ek (B⋅∇)A−(∇⋅A)B+A(∇⋅B)−(A⋅∇)B (B⋅∇)A−(A⋅∇)B+A(∇⋅B)−B(∇⋅A)
The fourth line holds due to ϵjkiϵjlm=δklδim−δkmδil. The seventh line holds due to Einstein Notation.
■