logo

Rotation of Separation Vector 📂Mathematical Physics

Rotation of Separation Vector

Equation

×2=0 \nabla \times \dfrac{\crH }{\cR ^2} = \mathbf{0}

Explanation

There is nothing particularly special about this formula. It emerges in the process of calculating the divergence of a magnetic field, and its calculation is not straightforward, hence the separate explanation.

Proof

If we refer to =(xx)x^+(yy)y^+(zz)z^\bcR=(x-x^{\prime})\hat{\mathbf{x}} + (y-y^{\prime})\hat{\mathbf{y}} + (z-z^{\prime})\hat{\mathbf{z}} as a component vector, it can be represented as follows:

==(xx)2+(yy)2+(zz)2 | \bcR |=\cR=\sqrt{(x-x^{\prime})^2+(y-y^{\prime})^2 + (z-z^{\prime})^2}

==(xx)x^+(yy)y^+(zz)z^(xx)2+(yy)2+(zz)2 \crH = \dfrac{ \bcR } { \cR}=\dfrac{(x-x^{\prime})\hat{\mathbf{x}} + (y-y^{\prime})\hat{\mathbf{y}} + (z-z^{\prime})\hat{\mathbf{z}}}{\sqrt{(x-x^{\prime})^2+(y-y^{\prime})^2 + (z-z^{\prime})^2}}

2=1(xx)2+(yy)2+(zz)2(xx)x^+(yy)y^+(zz)z^(xx)2+(yy)2+(zz)2 \dfrac{\crH}{\cR^2}=\dfrac{1}{(x-x^{\prime})^2+(y-y^{\prime})^2 + (z-z^{\prime})^2}\dfrac{(x-x^{\prime})\hat{\mathbf{x}} + (y-y^{\prime})\hat{\mathbf{y}} + (z-z^{\prime})\hat{\mathbf{z}}}{\sqrt{(x-x^{\prime})^2+(y-y^{\prime})^2 + (z-z^{\prime})^2}}

For the sake of simplicity, let’s say

2=Axx^+Ayy^+Azz^ \dfrac{\crH }{\cR ^2} = A_{x} \hat{\mathbf{x}} + A_{y} \hat{\mathbf{y}} + A_{z}\hat{\mathbf{z}}

Then,

×2=x^y^z^xyzAxAyAz=(yAzzAy)x^+(zAxxAz)y^+(xAyyAx)z^ \begin{align*} \nabla \times \dfrac{ \crH}{\cR^2} &= \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \dfrac{\partial }{\partial x} & \dfrac{\partial }{\partial y} & \dfrac{\partial }{\partial z} \\ A_{x} & A_{y} & A_{z} \end{vmatrix} \\ &= \left( \dfrac{ \partial}{\partial y} A_{z} -\dfrac{\partial }{\partial z}A_{y} \right) \hat{\mathbf{x}} + \left( \dfrac{ \partial}{\partial z} A_{x} -\dfrac{\partial }{\partial x}A_{z} \right) \hat{\mathbf{y}} +\left( \dfrac{ \partial}{\partial x} A_{y} -\dfrac{\partial }{\partial y}A_{x} \right) \hat{\mathbf{z}} \end{align*}

Let’s first calculate the x^\hat{\mathbf{x}} term.

yAzzAy= y[[(xx)2+(yy)2+(zz)2]32(zz)]z[[(xx)2+(yy)2+(zz)2]32(yy)]= 32[[(xx)2+(yy)2+(zz)2]52(zz)]2(yy)+32[[(xx)2+(yy)2+(zz)2]52(yy)]2(zz)= 3[(xx)2+(yy)2+(zz)2]52(zz)(yy)+3[(xx)2+(yy)2+(zz)2]52(yy)(zz)= 0 \begin{align*} & \dfrac{\partial }{\partial y} A_{z} - \dfrac{\partial}{\partial z}A_{y} \\ =&\ \dfrac{\partial }{\partial y} \left[ \left[ (x-x^{\prime})^2+(y-y^{\prime})^2+(z-z^{\prime})^2 \right]^{-\frac{3}{2}}(z-z^{\prime}) \right] \\ &- \dfrac{\partial }{\partial z} \left[ \left[ (x-x^{\prime})^2+(y-y^{\prime})^2+(z-z^{\prime})^2 \right]^{-\frac{3}{2}}(y-y^{\prime}) \right] \\ =&\ -\dfrac{3}{2}\left[ \left[ (x-x^{\prime})^2+(y-y^{\prime})^2+(z-z^{\prime})^2 \right]^{-\frac{5}{2}}(z-z^{\prime}) \right]\cdot 2(y-y^{\prime}) \\ & +\dfrac{3}{2}\left[ \left[ (x-x^{\prime})^2+(y-y^{\prime})^2+(z-z^{\prime})^2 \right]^{-\frac{5}{2}}(y-y^{\prime}) \right]\cdot 2(z-z^{\prime}) \\ =&\ -3 \left[ (x-x^{\prime})^2+(y-y^{\prime})^2+(z-z^{\prime})^2 \right]^{-\frac{5}{2}}(z-z^{\prime})(y-y^{\prime}) \\ & +3 \left[ (x-x^{\prime})^2+(y-y^{\prime})^2+(z-z^{\prime})^2 \right]^{-\frac{5}{2}}(y-y^{\prime})(z-z^{\prime}) \\ =&\ 0 \end{align*}

By using the same method, the y^\hat{\mathbf{y}} and z^\hat{\mathbf{z}} terms also lead to 00.

×2=0 \therefore \nabla \times \dfrac{ \crH}{\cR^2} = \mathbf{0}