logo

Electric Field Created by Bound Charges and Polarized Objects 📂Electrodynamics

Electric Field Created by Bound Charges and Polarized Objects

Bound Charges

External electric fields cause the dipoles in a material to align in one direction, polarizing the material and giving it a dipole moment p\mathbf{p}. The electric field produced by these dipole moments is calculated as follows. The potential created by the dipole moment p\mathbf{p} is as follows.

V(r)=14πϵ0p2 \begin{equation} V(\mathbf{r}) = \dfrac{1}{4 \pi \epsilon_{0}} \dfrac{ \mathbf{p} \cdot \crH } {\cR ^2} \label{1} \end{equation}

1.JPG

r\mathbf{r}^{\prime} is the position vector of the source point, r\mathbf{r} is the position vector of the observation point, =rr\bcR=\mathbf{r} - \mathbf{r}^{\prime} is the separation vector. The polarization density P\mathbf{P} is the dipole moment per unit volume, so

P=pdτ \mathbf{P}=\dfrac{\mathbf{p}}{d \tau^{\prime}}

Substituting this into (1)\eqref{1},

V(r)=14πϵ0VP(r)^2dτ V(\mathbf{r}) = \dfrac{1}{4 \pi \epsilon_{0} } \displaystyle \int _\mathcal{V} \dfrac{ \mathbf{P (\mathbf{r}^{\prime} ) \cdot \hat { \boldsymbol {\cR} } } }{\cR ^2} d \tau^{\prime}

Using (1)=2\nabla ^{\prime} \left( \dfrac{1}{\cR} \right) = \dfrac{ \crH } {\cR^2} here, the above equation becomes

V=14πϵ0VP(1)dτ V=\dfrac{1}{4\pi \epsilon_{0}} \displaystyle \int _\mathcal{V} \mathbf{P} \cdot \nabla^{\prime} \left( \dfrac{1}{\cR} \right) d \tau^{\prime}

Product rule involving the del operator

(fA)=f(A)+A(f) \nabla \cdot (f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot (\nabla f)

Using the above multiplication rule,

(P)= 1(P)+P(1)    P(1)= (P)1(P) \begin{align*} && \nabla^{\prime} \cdot \left( \dfrac{ \mathbf{P} } {\cR} \right) =&\ \dfrac{1}{\cR} ( \nabla^{\prime} \cdot \mathbf{P} ) + \mathbf{P} \cdot \nabla^{\prime} \left( \dfrac{1}{\cR} \right) \\ \implies && \mathbf{P} \cdot \nabla^{\prime} \left( \dfrac{1}{\cR} \right) =&\ \nabla^{\prime} \cdot \left( \dfrac{ \mathbf{P} } {\cR} \right) -\dfrac{1}{\cR} ( \nabla^{\prime} \cdot \mathbf{P} ) \end{align*}

and substituting this,

V=14πϵ0V(P)dτ14πϵ0V1(P)dτ V = \dfrac{1}{4 \pi \epsilon_{0}} \int_\mathcal{V} \nabla^{\prime} \cdot \left( \dfrac{ \mathbf{ P} }{\cR} \right) d\tau^{\prime} -\dfrac{1}{4 \pi \epsilon_{0}} \int _\mathcal{V} \dfrac{1}{\cR} (\nabla^{\prime} \cdot \mathbf{P} ) d\tau^{\prime}

Divergence theorem

VFdV=SFdS \int_\mathcal{V} \nabla \cdot \mathbf{ F} dV = \oint _\mathcal{S} \mathbf{F} \cdot d \mathbf{ S}

Using the divergence theorem on the first term,

V=14πϵ0S(P)da14πϵ0V1(P)dτ V = \dfrac{1}{4 \pi \epsilon_{0}} \oint_\mathcal{S} \left( \dfrac{ \mathbf{ P} }{\cR} \right) \cdot d\mathbf{a}^{\prime} -\dfrac{1}{4 \pi \epsilon_{0}} \int _\mathcal{V} \dfrac{1}{\cR} (\nabla^{\prime} \cdot \mathbf{P} ) d\tau^{\prime}

If the unit normal vector to the surface is denoted by n^\hat { \mathbf{n} }, it can be represented as Pda=Pn^da\mathbf{P} \cdot d\mathbf{a}^{\prime}=\mathbf{P} \cdot \hat{ \mathbf{n} } da^{\prime}. Here, Pn^\mathbf{P} \cdot \hat{ \mathbf{n} } is denoted as σb\sigma_{b} and called the bound surface charge density.

σb=Pn^ \sigma_{b} = \mathbf{P} \cdot \hat{ \mathbf{n} }

Similarly, P-\nabla^{\prime} \cdot \mathbf{P} is denoted as ρb\rho_{b} and called the bound volume charge density.

ρb=P \rho_{b}=-\nabla^{\prime} \cdot \mathbf{P}

Now, the potential due to the polarization density P\mathbf{P} can be expressed as the potential produced by these two bound charges.

V(r)=14πϵ0Sσbda+14πϵ0Vρbdτ V(\mathbf{r}) = \dfrac{1}{4 \pi \epsilon_{0}} \oint_\mathcal{S} \dfrac{ \sigma_{b}} {\cR} da^{\prime}+\dfrac{1}{4 \pi \epsilon_{0}} \int_\mathcal{V} \dfrac{\rho_{b}}{\cR} d\tau^{\prime}

The potential created by a polarized body is the sum of the potentials created by the bound volume charge density ρb\rho_{b} and the bound surface charge density σb\sigma_{b}.

Characteristics

  1. The total bound charge adds up to 00. Polarizing an electrically neutral dielectric moves charges to create bound charges, but the total charge still equals 00.

  2. When the polarization density is uniform, the bound volume charge density equals 00. Since ρb=P\rho_{b}=-\nabla \cdot \mathbf{P}, if P\mathbf{P} is constant, the differentiated result will be 00.