logo

Product of Two Levi-Civita Symbols 📂Mathematical Physics

Product of Two Levi-Civita Symbols

Theorem

The ϵijk\epsilon_{ijk}, defined as follows, is referred to as the Levi-Civita symbol.

ϵijk={+1if ϵ123,ϵ231,ϵ3121if ϵ132,ϵ213,ϵ3210if i=j or j=k or k=i \epsilon_{ijk} = \begin{cases} +1 & \text{if} \ \epsilon_{123}, \epsilon_{231}, \epsilon_{312} \\ -1 & \text{if} \ \epsilon_{132}, \epsilon_{213}, \epsilon_{321} \\ 0 & \text{if} \ i=j \ \text{or} \ j=k \ \text{or} \ k=i \end{cases}

The δij\delta_{ij}, defined as follows, is referred to as the Kronecker delta.

δij:={1,i=j0,ij \delta_{ij} := \begin{cases} 1,&i=j \\ 0, & i\ne j \end{cases}

Between the product of two Levi-Civita symbols and the Kronecker delta, the following relationships hold:

(a) When one index is the same: ϵijkϵilm=δjlδkmδjmδkl\epsilon_{ijk}\epsilon_{ilm} = \delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl}

(b) When two indices are the same: ϵijkϵijm=2δkm\epsilon_{ijk}\epsilon_{ijm}=2\delta_{km}

(c) When all three indices are the same: ϵijkϵijk=6\epsilon_{ijk}\epsilon_{ijk}=6

Explanation

Note that the summation symbol \sum is omitted throughout this text, adhering to the Einstein notation. This applies to the formulas above as well. Memorizing (a) can be very useful as it’s frequently used. A simple way to remember it is as follows.

1.PNG

Proof

(a)

Let ei\mathbf{e}_{i} (i=1,2,3)(i=1,2,3) be the standard unit vectors in 3-dimensional space.

e1=(1,0,0),e2=(0,1,0),e3=(0,0,1) \mathbf{e}_{1} = (1, 0, 0),\quad \mathbf{e}_{2} = (0, 1, 0),\quad \mathbf{e}_{3} = (0, 0, 1)

Let PijkP_{ijk} be a 3×33 \times 3 matrix whose 1st, 2nd, and 3rd rows are ei\mathbf{e}_{i}, ej\mathbf{e}_{j}, and ek\mathbf{e}_{k}, respectively.

Pijk=[— ei —— ej —— ek —] P_{ijk} = \begin{bmatrix} \text{— } \mathbf{e}_{i} \text{ —} \\ \text{— } \mathbf{e}_{j} \text{ —} \\ \text{— } \mathbf{e}_{k} \text{ —} \end{bmatrix}

Then, by the properties of determinants, it’s easy to see that detPijk=ϵijk\det P_{ijk} = \epsilon_{ijk}. Initially, P123P_{123} is the identity matrix, hence its determinant is 11. Moreover, the value of the determinant remains unchanged when swapping different rows an even number of times, hence,

detP123=detP231=detP312=1 \det P_{123} = \det P_{231} = \det P_{312} = 1

When different rows are swapped an odd number of times, the sign of the determinant changes, hence,

detP132=detP213=detP321=1 \det P_{132} = \det P_{213} = \det P_{321} = -1

The determinant of a matrix with two or more identical rows is 00, hence the rest of the cases are all 00. Therefore, detPijk=ϵijk\det P_{ijk} = \epsilon_{ijk} holds true. The product of two Levi-Civita symbols with one identical index can be expressed as follows, using the properties of determinants.

ϵijkϵilm=det[— ei —— ej —— ek —]det[— ei —— el —— em —]=det[— ei —— ej —— ek —]det[eielem](detA=detAT)=det([— ei —— ej —— ek —][eielem])((detA)(detB)=det(AB))=det[eieieieleiemejeiejelejemekeiekelekem] \begin{align*} \epsilon_{ijk}\epsilon_{ilm} &= \det \begin{bmatrix} \text{— } \mathbf{e}_{i} \text{ —} \\ \text{— } \mathbf{e}_{j} \text{ —} \\ \text{— } \mathbf{e}_{k} \text{ —} \end{bmatrix} \det \begin{bmatrix} \text{— } \mathbf{e}_{i} \text{ —} \\ \text{— } \mathbf{e}_{l} \text{ —} \\ \text{— } \mathbf{e}_{m} \text{ —} \end{bmatrix} \\ &= \det \begin{bmatrix} \text{— } \mathbf{e}_{i} \text{ —} \\ \text{— } \mathbf{e}_{j} \text{ —} \\ \text{— } \mathbf{e}_{k} \text{ —} \end{bmatrix} \det \begin{bmatrix} \vert & \vert & \vert \\ \mathbf{e}_{i} & \mathbf{e}_{l} & \mathbf{e}_{m} \\ \vert & \vert & \vert \end{bmatrix} & (\because \det A = \det A^{T}) \\ &= \det \left( \begin{bmatrix} \text{— } \mathbf{e}_{i} \text{ —} \\ \text{— } \mathbf{e}_{j} \text{ —} \\ \text{— } \mathbf{e}_{k} \text{ —} \end{bmatrix} \begin{bmatrix} \vert & \vert & \vert \\ \mathbf{e}_{i} & \mathbf{e}_{l} & \mathbf{e}_{m} \\ \vert & \vert & \vert \end{bmatrix} \right) & \Big(\because (\det A) (\det B) = \det (AB) \Big) \\ &= \det \begin{bmatrix} \mathbf{e}_{i} \cdot \mathbf{e}_{i} & \mathbf{e}_{i} \cdot \mathbf{e}_{l} & \mathbf{e}_{i} \cdot \mathbf{e}_{m} \\ \mathbf{e}_{j} \cdot \mathbf{e}_{i} & \mathbf{e}_{j} \cdot \mathbf{e}_{l} & \mathbf{e}_{j} \cdot \mathbf{e}_{m} \\ \mathbf{e}_{k} \cdot \mathbf{e}_{i} & \mathbf{e}_{k} \cdot \mathbf{e}_{l} & \mathbf{e}_{k} \cdot \mathbf{e}_{m} \end{bmatrix} \end{align*}

Since ei\mathbf{e}_{i} are standard unit vectors, eiej=δij\mathbf{e}_{i} \cdot \mathbf{e}_{j} = \delta_{ij} holds true.

ϵijkϵilm=det[δiiδilδimδjiδjlδjmδkiδklδkm] \epsilon_{ijk}\epsilon_{ilm} = \det \begin{bmatrix} \delta_{ii} & \delta_{il} & \delta_{im} \\ \delta_{ji} & \delta_{jl} & \delta_{jm} \\ \delta_{ki} & \delta_{kl} & \delta_{km} \end{bmatrix}

Note that we are only considering cases where ii is different from j,k,l,mj, k, l, m. This is because if j,k,l,mj, k, l, m includes ii, then ϵijkϵilm=0\epsilon_{ijk}\epsilon_{ilm} = 0, rendering the result meaningless. Therefore, the result is

ϵijkϵilm=det[1000δjlδjm0δklδkm]=δjlδkmδjmδkl \epsilon_{ijk}\epsilon_{ilm} = \det \begin{bmatrix} 1 & 0 & 0 \\ 0 & \delta_{jl} & \delta_{jm} \\ 0 & \delta_{kl} & \delta_{km} \end{bmatrix} = \delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl}

(b)

This is the case where l=jl=j in (a). Thus, it can be expressed as follows.

ϵijkϵijm=δjjδkmδjmδkj \epsilon_{ijk}\epsilon_{ijm} = \delta_{jj}\delta_{km} - \delta_{jm}\delta_{kj}

Here, δjj=3\delta_{jj}=3 and δjmδkj=δmk\delta_{jm}\delta_{kj}=\delta_{mk} hold, leading to the following.

ϵijkϵijm=δjjδkmδjmδkj=3δkmδmk=2δkm \epsilon_{ijk}\epsilon_{ijm} = \delta_{jj}\delta_{km} - \delta_{jm}\delta_{kj} = 3\delta_{km} - \delta_{mk} = 2\delta_{km}

(c)

This is the case where m=km=k in (b), hence,

ϵijkϵijk=k=132δkk=2δ11+2δ22+2δ33=2+2+2=6 \epsilon_{ijk}\epsilon_{ijk} = \sum_{k=1}^{3}2\delta_{kk} = 2\delta_{11} + 2\delta_{22} + 2\delta_{33} = 2 + 2 + 2 = 6

Alternatively, by explicitly writing out all non-zero terms, the following can be obtained.

ϵijkϵijk=i=13j=13k=11ϵijkϵijk=ϵ123ϵ123+ϵ231ϵ231+ϵ312ϵ312+ϵ132ϵ132+ϵ213ϵ213+ϵ321ϵ321=6 \begin{align*} \epsilon_{ijk}\epsilon_{ijk} &=\sum \limits _{i=1} ^{3}\sum \limits _{j=1} ^{3}\sum \limits _{k=1} ^{1} \epsilon_{ijk}\epsilon_{ijk} \\ &=\epsilon_{123}\epsilon_{123}+\epsilon_{231}\epsilon_{231}+\epsilon_{312}\epsilon_{312}+\epsilon_{132}\epsilon_{132}+\epsilon_{213}\epsilon_{213}+\epsilon_{321}\epsilon_{321} \\ &=6 \end{align*}