logo

Local Lipschitz Condition 📂Analysis

Local Lipschitz Condition

Definition

If EE is open in Rn\mathbb{R}^{n} and let’s denote it f:ERn\mathbf{f} : E \to \mathbb{R}^{n}. If for all x0E\mathbf{x} _{0} \in E, there exists a ε>0\varepsilon > 0 that satisfies B(x0;ε)EB \left( \mathbf{x} _{0} ; \varepsilon \right) \subset E and for all x,yB(x0;ε)\mathbf{x} , \mathbf{y} \in B \left( \mathbf{x} _{0} ; \varepsilon \right), there exists a K>0K >0 that satisfies f(x)f(y)Kxy| \mathbf{f} ( \mathbf{x} ) - \mathbf{f} ( \mathbf{y} ) | \le K | \mathbf{x} - \mathbf{y} |, then f\mathbf{f} is said to be locally Lipschitz in EE.

In this case, the following relationships hold.

Strong Lipschitz condition     \implies Lipschitz condition     \implies Local Lipschitz condition

Theorem

If fC1(E)\mathbf{f} \in C^{1} (E), then f\mathbf{f} is locally Lipschitz in EE.


  • Euclidean space Rn\mathbb{R}^{n}’s ball is represented as B(x0;d):={xRnx0x<d}B[x0;d]:={xRnx0xd} B \left( \mathbf{x}_{0} ; d \right) := \left\{ \mathbf{x} \in \mathbb{R}^{n} \mid | \mathbf{x}_{0} - \mathbf{x} | < d \right\} \\ B \left[ \mathbf{x}_{0} ; d \right] := \left\{ \mathbf{x} \in \mathbb{R}^{n} \mid | \mathbf{x}_{0} - \mathbf{x} | \le d \right\} and DD is a differential operator.

Proof

Since EE is open, there exists an open ball B(x0;ε)EB \left( \mathbf{x} _{0} ; \varepsilon \right) \subset E for the given x0E\mathbf{x}_{0} \in E. Saying fC1(E)\mathbf{f} \in C^{1} (E) means that there exists DfD \mathbf{f}, and we can set K:=maxxB[x0;ε2]Df(x)\displaystyle K : = \max_{ \mathbf{x} \in B \left[ \mathbf{x} _{0} ; {{\varepsilon} \over {2}} \right] } \left\| D \mathbf{f} ( \mathbf{x} ) \right\|.

If for each x,yB[x0;ε2]\mathbf{x} , \mathbf{y} \in B \left[ \mathbf{x} _{0} ; {{\varepsilon} \over {2}} \right] we denote u:=yx\mathbf{u} := \mathbf{y} - \mathbf{x}, as B[x0;ε2]B \left[ \mathbf{x} _{0} ; {{\varepsilon} \over {2}} \right] is convex, for all s[0,1]s \in [0,1]

x+suB[x0;ε2] \mathbf{x} + s \mathbf{u} \in B \left[ \mathbf{x} _{0} ; {{\varepsilon} \over {2}} \right]

If we define the function F:[0,1]RnF : [0,1] \to \mathbb{R}^{n} as F(s):=f(x+su)F (s) := \mathbf{f} ( \mathbf{x} + s \mathbf{u} ) then

F(s)=Df(x+su)u F ' (s) = D \mathbf{f} ( \mathbf{x} + s \mathbf{u} ) \mathbf{u}

Therefore

f(y)f(x)=F(1)F(0)=01F(s)ds=01Df(x+su)uds \mathbf{f} ( \mathbf{y} ) - \mathbf{f} ( \mathbf{x} ) = F (1) - F(0) = \int_{0}^{1} F ' (s) ds = \int_{0}^{1} D \mathbf{f} ( \mathbf{x} + s \mathbf{u} ) \mathbf{u} ds

Taking the absolute value of both sides of the obtained equation gives

f(y)f(x)01Df(x+su)uds01Df(x+su)uds \begin{align*} &\left| \mathbf{f} ( \mathbf{y} ) - \mathbf{f} ( \mathbf{x} ) \right| \\ \le & \int_{0}^{1} \left| D \mathbf{f} ( \mathbf{x} + s \mathbf{u} ) \mathbf{u} \right| ds \\ \le & \int_{0}^{1} \left\| D \mathbf{f} ( \mathbf{x} + s \mathbf{u} ) \right\| \left| \mathbf{u} \right| ds \end{align*}

Then, by the properties of operators,

01Df(x+su)udsKuKyx \begin{align*} & \int_{0}^{1} \left\| D \mathbf{f} ( \mathbf{x} + s \mathbf{u} ) \right\| \left| \mathbf{u} \right| ds \\ \le & K | \mathbf{u} | \\ \le & K | \mathbf{y} - \mathbf{x} | \end{align*}

To summarize

f(y)f(x)Kyx \left| \mathbf{f} ( \mathbf{y} ) - \mathbf{f} ( \mathbf{x} ) \right| \le K | \mathbf{y} - \mathbf{x} |

Therefore, f\mathbf{f} is locally Lipschitz in EE.