logo

Lyapunov Exponents of One-Dimensional Maps 📂Dynamics

Lyapunov Exponents of One-Dimensional Maps

Definition1

Let’s assume an orbit {x1,x2,x3,}\left\{ x_{1} , x_{2} , x_{3} , \cdots \right\} of a smooth 11-dimensional map f:RRf : \mathbb{R} \to \mathbb{R} is given.

Lyapunov Number

The following is called the Lyapunov Number: L(x1):=limn(i=1nf(xi))1/nL ( x_{1} ) : = \lim_{ n \to \infty } \left( \prod_{i = 1}^{n} | f ' (x_{i} ) | \right)^{1/n}

Lyapunov Exponent

The following is called the Lyapunov Exponent: h(x1):=limn1ni=1nlnf(xi)h ( x_{1} ) := \lim_{n \to \infty } {{1} \over {n}} \sum_{i=1}^{n} \ln | f ' (x_{i} ) | The Lyapunov Exponent is often also represented by λ\lambda.

Description

Intuitive Definition 2

The intuitive concept of the Lyapunov Number can be seen as ‘how much does a small difference in initial conditions affect the distant future’. Let’s denote the distance after a time of nn has passed from the initial condition x1x_{1} and a very small distance δ10\delta_{1} \approx 0 away at x1+δ1x_{1} + \delta_{1} by δn:=fn(x1+δ1)fn(x1) \delta_{n} := f^{n} \left( x_{1} + \delta_{1} \right) - f^{n} \left( x_{1} \right) Here, when δnδ1enλ\left| \delta_{n} \right| \approx \left| \delta_{1} \right| e^{n \lambda}, λ\lambda can be defined as the Lyapunov Exponent. If the Lyapunov Exponent is 00 or greater, the higher the value, the greater the difference between δ1\left| \delta_{1} \right| and δn\left| \delta_{n} \right|, meaning the difference in initial conditions has a significant effect in the distant future. If it is less than 00, the lower the value, the more similar the two values, meaning the initial condition differences have less impact on the distant future. If we further develop the formula for λ\lambda, by taking the logarithm on both sides, δnδ1enλ    lnδnlnδ1nλ \left| \delta_{n} \right| \approx \left| \delta_{1} \right| e^{n \lambda} \implies \ln \left| \delta_{n} \right| \approx \ln \left| \delta_{1} \right| n \lambda and, λ1nlnδnδ1=1nlnfn(x1+δ1)fn(x1)δ11nln(fn)(x1) \begin{align*} \lambda \approx& {\frac{ 1 }{ n }} \ln \left| {\frac{ \delta_{n} }{ \delta_{1} }} \right| \\ =& {\frac{ 1 }{ n }} \ln \left| {\frac{ f^{n} \left( x_{1} + \delta_{1} \right) - f^{n} \left( x_{1} \right) }{ \delta_{1} }} \right| \\ \approx& {\frac{ 1 }{ n }} \ln \left| \left( f^{n} \right) ' \left( x_{1} \right) \right| \end{align*} Meanwhile, (fn)(x1)\left( f^{n} \right) ' \left( x_{1} \right), according to the chain rule, (fn)(x1)=[f(fn1)(x1)]=(fn1)(x1)f(fn1(x1))=(fn1)(x1)f(xn)=(fn2)(x1)f(fn2(x1))f(xn)=(fn2)(x1)f(xn1)f(xn)=k=1nf(xk) \begin{align*} \left( f^{n} \right) ' \left( x_{1} \right) =& \left[ f \left( f^{n-1} \right) \left( x_{1} \right) \right] ' \\ =& \left( f^{n-1} \right) ' \left( x_{1} \right) \cdot f ' \left( f^{n-1} \left( x_{1} \right) \right) \\ =& \left( f^{n-1} \right) ' \left( x_{1} \right) f ' \left( x_{n} \right) \\ =& \left( f^{n-2} \right) ' \left( x_{1} \right) \cdot f ' \left( f^{n-2} \left( x_{1} \right) \right) f ' \left( x_{n} \right) \\ =& \left( f^{n-2} \right) ' \left( x_{1} \right) \cdot f ' \left( x_{n-1} \right) f ' \left( x_{n} \right) \\ & \vdots \\ =& \prod_{k=1}^{n} f ' \left( x_{k} \right) \end{align*} Therefore, λ1nln(fn)(x1)=1nlnk=1nf(xk)=1nk=1nlnf(xk) \begin{align*} \lambda \approx& {\frac{ 1 }{ n }} \ln \left| \left( f^{n} \right) ' \left( x_{1} \right) \right| \\ =& {\frac{ 1 }{ n }} \ln \left| \prod_{k=1}^{n} f ' \left( x_{k} \right) \right| \\ =& {\frac{ 1 }{ n }} \sum_{k=1}^{n} \ln \left| f ' \left( x_{k} \right) \right| \end{align*} thus, for large enough nNn \in \mathbb{N}, the following approximation can be induced. λ1nk=1nlnf(xk)limN1Nk=1Nlnf(xk)=h(x1) \lambda \approx {{1} \over {n}} \sum_{k=1}^{n} \ln | f ' (x_{k} ) | \approx \lim_{N \to \infty} {{1} \over {N}} \sum_{k=1}^{N} \ln | f ' (x_{k} ) | = h \left( x_{1} \right)

Chaos Theory

Thinking again about the concepts of sinks and sources, a sink can be seen as a ‘convergence point’ where nearby points gather, and a source as a ‘divergence point’ where previously close points start moving apart. This can also be extended similarly for periodic orbits.

Sink and Source Judgment for Orbits: > Let’s call the periodic-kk orbit of ff as {p1,p2,,pk}\left\{ p_{1} , p_{2} , \cdots , p_{k} \right\}. If f(p1)f(pk)<1\left| f '(p_{1}) \cdots f '(p_{k}) \right| < 1, then {p1,p2,,pk}\left\{ p_{1} , p_{2} , \cdots , p_{k} \right\} is a sink, and if f(p1)f(pk)>1\left| f '(p_{1}) \cdots f '(p_{k}) \right| > 1, then {p1,p2,,pk}\left\{ p_{1} , p_{2} , \cdots , p_{k} \right\} is a source.

The Lyapunov Number was introduced to extend these concepts beyond periodic orbits. When considering sinks as showing a stable tendency and sources as indicating a spreading fluctuation, if the infinite product of derivatives represented by L(x1)L ( x_{1} ) is greater than 11, it implicitly indicates that the orbit of x1x_{1} is a source. From this viewpoint, the Lyapunov Exponent defines the concept of chaos along with asymptotically periodic, or provides the following theorem.

Theorem3

Let’s assume that {x1,x2,}\left\{ x_{1} , x_{2} , \cdots \right\}, satisfying f(xi)0f ' (x_{i} ) \ne 0, is asymptotically periodic to the periodic-kk orbit {y1,y2,,yk,}\left\{ y_{1} , y_{2} , \cdots , y_{k} , \cdots \right\} in the smooth map f:RRf : \mathbb{R} \to \mathbb{R}. Then, both orbits have the same Lyapunov Exponent.

Proof

Part 1. The average of a sequence converges to the limit of the original sequence.

As a simple fact, if limnsn=s\displaystyle \lim_{n \to \infty} s_{n} = s, then for mZm \in \mathbb{Z}, limnsn+m=s\displaystyle \lim_{n \to \infty} s_{n+m} = s holds.

Then, the average also converges to ss, and mathematically, limn1ni=1nsi=s\displaystyle \lim_{n \to \infty} {{1} \over {n}} \sum_{i=1}^{n} s_{i} = s


Part 2.

If k=1k=1, then y1y_{1} becomes the fixed point of ff. limnxn=y1\displaystyle \lim_{ n \to \infty } x_{n} = y_{1} and since ff is smooth,

limnf(xn)=f(limnxn)=f(y1) \lim_{n \to \infty } f ' (x_{n}) = f ' \left( \lim_{n \to \infty} x_{n} \right) = f ' ( y_{1} )

Meanwhile, ln\ln | \cdot | is also a continuous function, so

limnlnf(xn)=lnlimnf(xn)=lnf(y1) \lim_{n \to \infty } \ln | f ' (x_{n}) | = \ln \left| \lim_{n \to \infty} f ' ( x_{n} ) \right| = \ln | f ' ( y_{1} ) |

Therefore, by Part 1.,

h(x1)=limn1ni=1nlnf(xn)=limnlnf(xn)=11lnf(y1)=h(y1) \begin{align*} h ( x_{1} ) =& \lim_{n \to \infty } {{1} \over {n} } \sum_{i=1}^{n} \ln | f ' (x_{n}) | \\ =& \lim_{n \to \infty } \ln | f ' (x_{n}) | \\ =& {{1} \over {1}} \ln | f ' (y_{1} ) | \\ =& h (y_{1} ) \end{align*}


Part 3.

Assuming under ff the Lyapunov Number of x1x_{1} is L:=limn(f(x1)f(xn))1/n\displaystyle L := \lim_{ n \to \infty } \left( | f ' ( x_{1} ) | \cdots | f ' ( x_{n} ) | \right)^{1/n}. By the chain rule, for i=1,,ki = 1, \cdots , k, (fk)(xi)=f(x1)f(xk)( f^{k} )' ( x_{i} ) = f ' ( x_{1} ) \cdots f ' ( x_{k} ), therefore, under fkf^{k} the Lyapunov Number of x1x_{1} is

limn((fk)(x1)(fk)(xn))1/n=limn(f(x1)f(xn))k/n=Lk \begin{align*} & \lim_{ n \to \infty } \left( \left| (f^{k})' ( x_{1} ) \right| \cdots \left| (f^{k}) ’ ( x_{n} ) \right| \right)^{1/n} \\ =& \lim_{ n \to \infty } \left( | f ' ( x_{1} ) | \cdots | f ' ( x_{n} ) | \right)^{k/n} \\ =& L^{k} \end{align*}

The calculation process naturally implies the reverse is also true, and under ff the Lyapunov Exponent of x1x_{1} is the same as under h=fk h = f^{k}.


Part 4.

If k>1k > 1, then y1y_{1} is the fixed point of fkf^{k} and {x1,x2,}\left\{ x_{1} , x_{2} , \cdots \right\} is asymptotically periodic to {y1,y2,,yk,}\left\{ y_{1} , y_{2} , \cdots , y_{k}, \cdots \right\}.

h(x1)=limn1n(lnf(x1)++lnf(xn))=limn1nln(f(x1)f(xn))=limn1knln(f(x1)kf(xn)k)=1klimnln((fk)(xn))=1kln(fk)(y1) \begin{align*} h(x_{1} ) =& \lim_{ n \to \infty } {{1} \over {n}} \left( \ln | f ' ( x_{1} ) | + \cdots + \ln | f ' ( x_{n} ) | \right) \\ =& \lim_{ n \to \infty } {{1} \over {n}} \ln \left( | f ' ( x_{1} ) | \cdots | f ' ( x_{n} ) | \right) \\ =& \lim_{ n \to \infty } {{1} \over {k \cdot n}} \ln \left( | f ' ( x_{1} ) |^{k} \cdots | f ' ( x_{n} ) |^{k} \right) \\ =& {{1} \over {k}} \lim_{ n \to \infty } \ln \left( | (f^{k} ) ’ ( x_{n} ) | \right) = {{1} \over {k}} \ln \left| ( f^{k} )' ( y_{1} ) \right| \end{align*}

By Part 2., under fkf^{k} the Lyapunov Exponent of x1x_{1} is

ln(fk)(y1) \ln \left| (f^{k})' (y_{1}) \right|

By Part 3., under ff the Lyapunov Exponent of x1x_{1} is

h(x1)=1kln(fk)(y1)=h(y1) h( x_{1} ) = {{1} \over {k}} \ln \left| ( f^{k} )' ( y_{1} ) \right| = h ( y_{1} )

See Also

Lyapunov Number of Multi-dimensional Maps


  1. Yorke. (1996). CHAOS: An Introduction to Dynamical Systems: p107. ↩︎

  2. Strogatz. (2015). Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering(2nd Edition): p366. ↩︎

  3. Yorke. (1996). CHAOS: An Introduction to Dynamical Systems: p108. ↩︎