logo

Integrability is Preserved in the Composition with Continuous Functions 📂Analysis

Integrability is Preserved in the Composition with Continuous Functions

This document is based on the Riemann-Stieltjes Integral. If we set it as α=α(x)=x\alpha=\alpha (x)=x, it equals the Riemann Integral.

Theorem1

Suppose that the function ff is Riemann(-Stieltjes) integrable on the interval [a,b][a,b] and let mfMm \le f \le M. Let ϕ\phi be a function that is continuous on the interval [m,M][m,M]. Let the function hh be defined as h=ϕfh=\phi \circ f. Then, hh is Riemann(-Stieltjes) integrable on the interval [a,b][a,b].

Proof

Let any positive number ε>0\varepsilon>0 be given. Since [m,M][m,M] is compact (as it is closed and bounded), and a continuous function on a compact set is uniformly continuous, ϕ\phi is uniformly continuous. Therefore, by the definition of uniform continuity, there exists δ<ε\delta < \varepsilon such that the following holds:

st<δ    ϕ(s)ϕ(t)<εs,t[m,M] \begin{equation} |s-t| < \delta \implies |\phi (s) - \phi (t) | < \varepsilon \quad \forall s,t \in [m,M] \end{equation}

And since ff is integrable, by the necessary and sufficient condition, there exists a partition PP that satisfies the following:

U(P,f,α)L(P,f,α)<δ2 \begin{equation} U(P,f,\alpha) - L(P,f,\alpha) < \delta^2 \end{equation}

Now, let us set the following.

Mif=supf(x)andmif=inff(x)(xi1xxi)Miϕ=supϕ(x)andmiϕ=infϕ(x)(xi1xxi) {M_{i}}^{f}=\sup f (x) \quad \text{and} \quad {m_{i}}^{f}=\inf f (x)\quad (x_{i-1} \le x \le x_{i} ) \\ {M_{i}}^{\phi}=\sup \phi (x) \quad \text{and} \quad {m_{i}}^{\phi}=\inf \phi (x)\quad (x_{i-1} \le x \le x_{i} )

Now, classify the index i=1,2,,ni=1,2,\cdots,n into two groups according to the following rule.

{iA,if Mifmif<δiB,if Mifmifδ \begin{equation} \begin{cases} i \in A, &\mathrm{if}\ M_{i}^{f} -m_{i}^{f} <\delta \\ i \in B, &\mathrm{if}\ M_{i}^{f} -m_{i}^{f} \ge\delta \end{cases} \end{equation}

Then, for iAi \in A, it follows from (1)(1) that Miϕmiϕ<ε{M_{i}}^{\phi} -{m_{i}}^{\phi} < \varepsilon.

For iBi \in B, we can consider KK that satisfies the following equation:

Miϕmiϕ2K(K=supϕ(t),mtM) \begin{equation} {\color{green} {M_{i}}^{\phi} -{m_{i}}^{\phi} } \le {\color{blue} 2K} (K=\sup |\phi (t)|, m \le t \le M) \end{equation}

(It is absolutely impossible that the difference between the maximum and minimum values in some interval is more than twice the maximum value of the entire interval) Thus, the following inequality holds:

δiBΔαi=iBδΔαiiB(Mifmif)Δαiby (3)iB(Mifmif)Δαi+iA(Mifmif)Δαi=i=1n(Mifmif)Δαi=U(P,f,α)L(P,f,α)<δ2by (2) \begin{align*} \delta \sum \limits_{i \in B} \Delta \alpha_{i} &= \sum \limits_{i \in B} \delta \Delta \alpha_{i} \\ &\le \sum \limits_{i \in B} (M_{i}^{f} -m_{i}^{f})\Delta \alpha_{i} & \text{by (3)} \\ &\le \sum \limits_{i \in B} (M_{i}^{f} -m_{i}^{f})\Delta \alpha_{i} + \sum \limits_{i \in A} (M_{i}^{f} - m_{i}^{f})\Delta \alpha_{i} \\ &= \sum \limits_{i=1}^n (M_{i}^{f}-m_{i}^{f})\Delta \alpha_{i} \\ &= U(P,f,\alpha)-L(P,f,\alpha) \\ &< \delta^2 & \text{by (2)} \end{align*}

Therefore, summarizing the above, we have:

iBΔαi<δ \begin{equation} \sum \limits_{i \in B} \Delta \alpha_{i}< \delta \end{equation}

Then, in order to demonstrate the necessary and sufficient condition for being integrable, let us rearrange the inequality as follows:

U(P,h,α)L(P,h,α)=iA(Miϕmiϕ)Δαi+iB(Miϕmiϕ)Δαi<iAεΔαi+iB2KΔαiby (1),(4)=εiAΔαi+2KiBΔαi<εiAΔαi+2Kδby (5)<εiAΔαi+2Kε=ε(S+2K)(S=iAΔαi) \begin{align*} U(P,h,\alpha) - L(P,h,\alpha) & = \sum \limits_{i \in A}{\color{green}({M_{i}}^{\phi} -{m_{i}}^{\phi} ) }\Delta \alpha _{i} + \sum \limits_{i \in B} {\color{blue}({M_{i}}^{\phi} -{m_{i}}^{\phi} )} \Delta \alpha_{i} \\ &< \sum \limits_{i \in A} {\color{green}\boldsymbol{\varepsilon} }\Delta \alpha _{i} + \sum \limits_{i \in B} {\color{blue}2K} \Delta \alpha_{i} & \text{by } {\color{green}(1)}, {\color{blue}(4)} \\ &= \varepsilon \sum \limits_{i \in A} \Delta \alpha _{i} + 2K \sum \limits_{i \in B} \Delta \alpha_{i} \\ &< \varepsilon \sum \limits_{i \in A} \Delta \alpha _{i} + 2K \delta & \text{by (5)} \\ &< \varepsilon \sum \limits_{i \in A} \Delta \alpha_{i} +2K\varepsilon \\ &=\varepsilon ( S+ 2K) \quad \left( S=\sum \limits_{i \in A} \Delta \alpha_{i} \right) \end{align*}

Therefore, summarizing the above, we have:

U(P,h,α)L(P,h,α)<ε(S+2K) U(P,h,\alpha) - L(P,h,\alpha) < \varepsilon ( S+ 2K)

Since this is a necessary and sufficient condition for being integrable, hh is integrable.


  1. Walter Rudin, Principles of Mathematical Analysis (3rd Edition, 1976), p127 ↩︎