logo

Monotone Functions are Riemann-Stieltjes Integrable 📂Analysis

Monotone Functions are Riemann-Stieltjes Integrable

About Riemann Integration

Let’s suppose that the function ff is monotonic over [a,b][a,b]. Then ff is Riemann integrable.

Proof

Assume that ff is a monotonically increasing function1. Let ϵ>0\epsilon >0 be given. Consider a partition P={xi:a=x0<x1<x2<<xn=b}P= \left\{ x_{i} : a=x_{0} < x_{1} < x_{2} < \cdots < x_{n}=b \right\} of the interval [a,b][a,b] that satifies the following for any natural number nn:

Δxi=xixi1=ban,(i=1,2,,n) \Delta x_{i} = x_{i}-x_{i-1} = \dfrac{b-a}{n},\quad (i=1,2,\dots,n)

In other words, PP is a partition that divides the interval [a,b][a,b] evenly. Now let’s set the following:

Mi=sup[xi1,xi]f(x)andmi=inf[xi1,xi]f(x) M_{i}=\sup\limits_{[x_{i-1},x_{i}]}f(x) \quad \text{and} \quad m_{i}=\inf\limits_{[x_{i-1},x_{i}]}f(x)

Since ff is a monotonically increasing function, the following holds true:

Mi=f(xi)andmi=f(xi1)(i=1,,n) M_{i}=f(x_{i}) \quad \text{and} \quad m_{i}=f(x_{i-1})\quad (i=1,\cdots,n)

Then, for sufficiently large nn, the following equation holds:

U(P,f)L(P,f)=i=1n(Mimi)Δxi=i=1n(Mimi)ban=bani=1n(Mimi)=bani=1n(f(xi)f(xi1))=ban[(f(x1)f(a))+(f(b)f(xn1))]=ban[f(b)f(a)]<ϵ \begin{align*} U(P,f)-L(P,f) &= \sum \limits_{i=1}^n (M_{i}-m_{i}) \Delta x_{i} \\ &= \sum \limits_{i=1}^n (M_{i}-m_{i})\dfrac{ b -a }{n} \\ &= \dfrac{ b-a }{n}\sum \limits_{i=1}^n (M_{i}-m_{i}) \\ &= \dfrac{b-a }{n}\sum \limits_{i=1}^n \left( f(x_{i}) - f(x_{i-1}) \right) \\ &= \dfrac{b-a }{n} \left[ \big( f(x_{1})- f(a) \big) + \cdots \big( f(b)- f(x_{n-1}) \big)\right] \\ &= \dfrac{b-a }{n} \left[ f(b)-f(a)\right] <\epsilon \end{align*}

Since this is a necessary and sufficient condition for integrability, ff is integrable.

About Stieltjes Integration2

If the function ff is monotonic over [a,b][a,b], and the function α\alpha is also monotonic and continuous over [a,b][a,b], then ff is Riemann-Stieltjes integrable.

Proof

Assume that ff is a monotonically increasing function1. Let ϵ>0\epsilon >0 be given. Consider a partition P={xi:a=x0<x1<x2<<xn=b}P= \left\{ x_{i} : a=x_{0} < x_{1} < x_{2} < \cdots < x_{n}=b \right\} of the interval [a,b][a,b] that satisfies the following for any natural number nn:

Δαi=α(b)α(a)n,(i=1,2,,n) \Delta \alpha_{i} = \dfrac{\alpha (b) -\alpha (a) }{n},\quad (i=1,2,\dots,n)

To put it another way, PP is a partition that divides the values of function α\alpha evenly. This is possible due to the continuity of α\alpha. Now, let’s set the following:

Mi=sup[xi1,xi]f(x)andmi=inf[xi1,xi]f(x) M_{i}=\sup\limits_{[x_{i-1},x_{i}]}f(x) \quad \text{and} \quad m_{i}=\inf\limits_{[x_{i-1},x_{i}]}f(x)

Since ff is a monotonically increasing function, the following holds true:

Mi=f(xi)andmi=f(xi1)(i=1,,n) M_{i}=f(x_{i}) \quad \text{and} \quad m_{i}=f(x_{i-1})\quad (i=1,\cdots,n)

Then, for sufficiently large nn, the following equation holds:

U(P,f,α)L(P,f,α)=i=1n(Mimi)Δαi=i=1n(Mimi)α(b)α(a)n=α(b)α(a)ni=1n(Mimi)=α(b)α(a)ni=1n(f(xi)f(xi1))=α(b)α(a)n[(f(x1)f(a))+(f(b)f(xn1))]=α(b)α(a)n[f(b)f(a)]<ϵ \begin{align*} U(P,f,\alpha)-L(P,f,\alpha) &= \sum \limits_{i=1}^n (M_{i}-m_{i}) \Delta \alpha_{i} \\ &= \sum \limits_{i=1}^n (M_{i}-m_{i})\dfrac{\alpha (b) -\alpha (a) }{n} \\ &= \dfrac{\alpha (b) -\alpha (a) }{n}\sum \limits_{i=1}^n (M_{i}-m_{i}) \\ &= \dfrac{\alpha (b) -\alpha (a) }{n}\sum \limits_{i=1}^n \left( f(x_{i}) - f(x_{i-1}) \right) \\ &= \dfrac{\alpha (b) -\alpha (a) }{n} \left[ \big( f(x_{1})- f(a) \big) + \cdots \big( f(b)- f(x_{n-1}) \big)\right] \\ &= \dfrac{\alpha (b) -\alpha (a) }{n} \left[ f(b)-f(a)\right] <\epsilon \end{align*}

Since this is a necessary and sufficient condition for integrability, ff is integrable.


  1. 단조감소함수인 경우에도 같은 방식으로 증명할 수 있다. ↩︎ ↩︎

  2. Walter Rudin, Principles of Mathmatical Analysis (3rd Edition, 1976), p126 ↩︎