logo

Electric Field Curl 📂Electrodynamics

Electric Field Curl

정리

Electric Field’s Curl is always 0\mathbf{0}.

×E=0 \nabla \times \mathbf{E} = \mathbf{0}

Proof1

We will derive a general result from the special case where a point charge is located at the origin. The electric field due to a point charge at a distance of rr from the origin is as follows.

E=14πϵ0qr2r^ \mathbf{E}=\dfrac{1}{4 \pi \epsilon_{0} } \dfrac{q}{r^2} \hat{\mathbf{r}}

If we perform a path integral of the electric field from point a\mathbf{a} to point b\mathbf{b} in a spherical coordinate system, we obtain the following.

abEdl= ab(14πϵ0qr2r^)(drr^+rdθθ^+rsinθdϕϕ^)= ab14πϵ0qr2dr= q4πϵ0ab1r2dr=q4πϵ0[1r]rarb= q4πϵ0(1ra1rb) \begin{align*} \int_\mathbf{a} ^\mathbf{b} \mathbf{E} \cdot d\mathbf{l} =&\ \int_\mathbf{a}^\mathbf{b} \left( \dfrac{1}{4 \pi \epsilon_{0}} \dfrac{q}{r^2} \hat{\mathbf{r}} \right) \cdot \left( dr \hat{\mathbf{r}} + rd\theta\hat{\boldsymbol{\theta}} + r\sin\theta d\phi \hat{\boldsymbol{\phi}} \right) \\ =&\ \int_\mathbf{a}^\mathbf{b} \dfrac{1}{4\pi\epsilon_{0}}\dfrac{q}{r^2}dr \\ =&\ \dfrac{q}{4 \pi \epsilon_{0}} \int_\mathbf{a}^\mathbf{b} \dfrac{1}{r^2} dr = \dfrac{q}{4 \pi \epsilon_{0}} \left[ -\dfrac{1}{r} \right]_{r_{a}}^{r_{b}} \\ =&\ \dfrac{q}{4 \pi \epsilon_{0}} \left( \dfrac{1}{r_{a}}-\dfrac{1}{r_{b}} \right) \end{align*}

Here, rar_{a} and rbr_{b} are the distances from the origin to point a\mathbf{a} and point b\mathbf{b}, respectively. As can be seen from the result of the above integration, the integral over a closed path is 00.

Edl=0 \oint \mathbf{E} \cdot d \mathbf{l} = 0

Stokes’ Theorem

S(×v)da=Pvdl \int_{\mathcal{S}} \left( \nabla \times \mathbf{v} \right) \cdot d\mathbf{a} = \oint _{\mathcal{P} }\mathbf{v} \cdot d \mathbf{l}

Using Stokes’ Theorem

(×E)da=Edl=0 \int \left( \nabla \times \mathbf{E} \right) \cdot d\mathbf{a} =\oint \mathbf{E} \cdot d\mathbf{l}=0

therefore, it can be seen that it must be ×E=0\nabla \times \mathbf{E} = \mathbf{0}. Since the integral over any arbitrary area must yield 0\mathbf{0}, it can only be ×E=0\nabla \times \mathbf{E} = \mathbf{0}.

The electric field for several point charges is the same as adding up the electric fields for each point charge. For continuously distributed charges, only change \sum to \int. Therefore, it is E=E1+E2+3+\mathbf{E}=\mathbf{E}_{1} + \mathbf{E}_2+\mathbf{3}+\cdots, and since the curl of each electric field is 0\mathbf{0}, their sum is naturally 0\mathbf{0}.

×E= ×(E1+E2+3+)= (×E1)+(×E2)+(×E3)+= 0 \begin{align*} \nabla \times \mathbf{E} =&\ \nabla \times (\mathbf{E}_{1} + \mathbf{E}_2+\mathbf{3}+\cdots ) \\ =&\ (\nabla \times \mathbf{E}_{1}) +(\nabla \times \mathbf{E}_2 )+(\nabla \times \mathbf{E}_{3})+\cdots \\ =&\ \mathbf{0} \end{align*}


  1. David J. Griffiths, 기초전자기학(Introduction to Electrodynamics, 김진승 역) (4th Edition, 2014), p84-85 ↩︎