logo

Automorphisms of a Body 📂Abstract Algebra

Automorphisms of a Body

Definition 1

Let EE be an extension field of FF.

  1. An isomorphism σ:EE\sigma : E \to E of field EE to itself is called an automorphism, and the set of all automorphisms of EE is denoted as Auto(E)\text{Auto} (E).
  2. If σAuto(E)\sigma \in \text{Auto} (E) then σ(a)=a\sigma ( a ) = a, it is said that σ\sigma fixes aa.
  3. Let SAuto(E)S \subset \text{Auto} (E). If for all aFa \in F, all σS\sigma \in S fixes aa, it is said that SS leaves a fixed subfield FF.
  4. If {σ}Auto(E)\left\{ \sigma \right\} \subset \text{Auto} (E) leaves a fixed FF, it is said that σ\sigma fixes FF.
  5. If {σ}Auto(E)\left\{ \sigma \right\} \subset \text{Auto} (E) leaves a fixed field E{σ}E_{ \left\{ \sigma \right\} }, it is said that σ\sigma fixes field EσE_{\sigma}.
  6. The set of all automorphisms of EE that leaves FF is denoted as G(E/F)G ( E / F ) and called the group of EE over FF.

Theorem

  • [1]: <Auto(E),>\left< \text{Auto} ( E ) , \circ \right> is a group.
  • [2]: G(E/F)Auto(E)G ( E / F) \le \text{Auto} ( E )

Example

The concept is very difficult and complex, so it is better understood through examples.

If F=Q(2)Q(2,3)=E F = \mathbb{Q} ( \sqrt{2} ) \le \mathbb{Q} ( \sqrt{2} , \sqrt{3} ) = E , then since (x23)F[x](x^2 - 3) \in F [ x ] is an irreducible element over FF, 3,3\sqrt{3} , \sqrt{-3} is prime over EE. By the conjugate homomorphism theorem, ψ3,3:EE\psi_{ \sqrt{3} , - \sqrt{3} } : E \to E is an isomorphism, and therefore we know that ψ3,3Auto(E) \psi_{ \sqrt{3} , - \sqrt{3} } \in \text{Auto} (E) .

Actually, take the function ψ3,3\psi_{ \sqrt{3} , - \sqrt{3} }. For a,b,c,dQa,b,c,d \in \mathbb{Q}, ψ3,3(a+b2+c3+d6)=a+b2c3c23 \psi_{ \sqrt{3} , - \sqrt{3} } ( a+ b \sqrt{2} + c \sqrt{3} + d \sqrt{6} ) = a+ b \sqrt{2} - c \sqrt{3} - c \sqrt{2} \sqrt{3} since for all (x+y2)Q(2)( x + y \sqrt{2} ) \in \mathbb{Q} ( \sqrt{2} ),

ψ3,3(x+y2)=x+y2 \psi_{ \sqrt{3} , - \sqrt{3} } ( x + y \sqrt{2} ) = x + y \sqrt{2} hence, it can be said that ψ3,3\psi_{ \sqrt{3} , - \sqrt{3} } leaves a fixed Q(2)\mathbb{Q} ( \sqrt{2} ). Simply put, Q(2)\mathbb{Q} ( \sqrt{2} ) can be considered as a subfield not affected by ψ3,3\psi_{ \sqrt{3} , - \sqrt{3} }. This is the sense in which terms like ‘fixed’ or ’leaves’ are used.

Furthermore, regarding the identity mapping II and the operation of function composition \circ, (ψα,αψα,α)=I \left( \psi_{ \alpha , - \alpha } \circ \psi_{ \alpha , - \alpha } \right) = I hence, <{I,ψ2,2,ψ3,3,(ψ2,2ψ3,3)},> \left< \left\{ I, \psi_{ \sqrt{2} , - \sqrt{2} }, \psi_{ \sqrt{3} , - \sqrt{3} } , ( \psi_{ \sqrt{2} , - \sqrt{2} } \circ \psi_{ \sqrt{3} , - \sqrt{3} } ) \right\} , \circ \right> forms not only a group but is specifically isomorphic to the Klein four-group.

Proof

[1]

  • (i): The composition of functions \circ satisfies the associative law, and the composition of functions of Auto(E)\text{Auto} ( E ) results in an automorphism of EE.
  • (ii): The identity mapping I:EEI : E \to E, for all aEa \in E, means I(a)=aI (a) = a, so it is an automorphism, and IAuto(E)I \in \text{Auto} ( E ).
  • (iii): Since Auto(E)\text{Auto} ( E ) is a set of automorphisms, for any given σ\sigma, its inverse mapping σ1Auto(E)\sigma^{-1} \in \text{Auto} ( E ) exists.

[2]

  • (i): The composition of functions \circ satisfies the associative law, and for σ,τG(E/F)\sigma , \tau \in G ( E / F ) and aFa \in F (στ)=σ(τ(a))=σ(a)=a (\sigma \tau) = \sigma ( \tau ( a ) ) = \sigma (a) = a hence (στ)G(E/F)(\sigma \tau) \in G ( E / F ).
  • (ii): The identity mapping II becomes the identity element for G(E/F) G ( E / F ).
  • (iii): If σ(a)=a\sigma ( a ) = a then a=σ1(a)a = \sigma^{-1} (a), hence σ1G(E/F)\sigma^{-1} \in G ( E / F ).


  1. Fraleigh. (2003). A first course in abstract algebra(7th Edition): p418. ↩︎