logo

Divergence of the Electric Field 📂Electrodynamics

Divergence of the Electric Field

Formulas1

The divergence of the electric field E\mathbf{E} produced by a volume charge with volume charge density ρ\rho is as follows.

E=1ϵ0ρ(r) \nabla \cdot \mathbf{E} = \dfrac{1}{\epsilon_{0}} \rho ( \mathbf{r} )

Description

The divergence of the electric field is also referred to as the differential form of Gauss’s law. Integrating both sides yields the integral form of Gauss’s law.

Proof

Electric field produced by the volume charge

E(r)=14πϵ0Vρ(r)2dτ \mathbf{E}(\mathbf {r}) =\dfrac{1}{4\pi \epsilon_{0}} \int _\mathcal{V} \dfrac{\rho (\mathbf{r}^{\prime})}{\cR^2} \crH d\tau^{\prime}

Here, =rr\bcR=\mathbf{r}-\mathbf{r}^{\prime} is the separation vector. Since the divergence of the separation vector is (12)=4πδ3()\nabla \cdot \left( \dfrac{1}{\cR^2}\crH \right) = 4\pi \delta^3(\bcR), calculating the divergence of the electric field results in the following.

E= 14πϵ0(^2)ρ(r)dτ= 14πϵ04πδ3()ρ(r)dτ= 14πϵ04πδ3(rr)ρ(r)dτ= 1ϵ0δ3(rr)ρ(r)dτ= 1ϵ0ρ(r) \begin{align*} \nabla \cdot \mathbf{E} =&\ \dfrac{1}{4\pi \epsilon_{0}} \int \nabla \cdot \left( \dfrac{ \hat {\boldsymbol {\cR}} } { \cR ^2} \right) \rho ( \mathbf{r}^{\prime} ) d\tau^{\prime} \\ =&\ \dfrac{1}{4\pi \epsilon_{0}} \int 4\pi \delta ^3 (\bcR ) \rho ( \mathbf{r}^{\prime} ) d\tau^{\prime} \\ =&\ \dfrac{1}{4\pi \epsilon_{0}} 4\pi \int\delta ^3 (\boldsymbol{\mathbf{r} - \mathbf{r}^{\prime}} ) \rho ( \mathbf{r}^{\prime} ) d\tau^{\prime} \\ =&\ \dfrac{1}{\epsilon_{0}} \int \delta ^3 (\boldsymbol{\mathbf{r}^{\prime} - \mathbf{r}} ) \rho ( \mathbf{r}^{\prime} ) d\tau^{\prime} \\ =&\ \dfrac{1}{\epsilon_{0}} \rho (\mathbf{r} ) \end {align*}

Here, δ\delta is the Dirac delta function. Taking the integral on both sides yields the following.

VEdτ=1ϵ0Vρ(r)dτ=1ϵ0Qin \int_\mathcal{V} \nabla \cdot \mathbf{E} d\tau = \dfrac{1}{\epsilon_{0}} \int _\mathcal{V} \rho (\mathbf{r})d\tau =\dfrac{1}{\epsilon_{0}}Q_{\text{in}}

Since ρ\rho is the volume charge density, integrating over the entire volume gives the total charge in the volume QinQ_{\text{in}}. And as known, this is the integral form of Gauss’s theorem.


  1. David J. Griffiths, Introduction to Electrodynamics (4th Edition, 2014), p77-78 ↩︎